AMBIENTUM BIOETHICA BIOLOGIA CHEMIA DIGITALIA DRAMATICA EDUCATIO ARTIS GYMNAST. ENGINEERING EPHEMERIDES EUROPAEA GEOGRAPHIA GEOLOGIA HISTORIA HISTORIA ARTIUM INFORMATICA IURISPRUDENTIA MATHEMATICA MUSICA NEGOTIA OECONOMICA PHILOLOGIA PHILOSOPHIA PHYSICA POLITICA PSYCHOLOGIA-PAEDAGOGIA SOCIOLOGIA THEOLOGIA CATHOLICA THEOLOGIA CATHOLICA LATIN THEOLOGIA GR.-CATH. VARAD THEOLOGIA ORTHODOXA THEOLOGIA REF. TRANSYLVAN
|
|||||||
The STUDIA UNIVERSITATIS BABEŞ-BOLYAI issue article summary The summary of the selected article appears at the bottom of the page. In order to get back to the contents of the issue this article belongs to you have to access the link from the title. In order to see all the articles of the archive which have as author/co-author one of the authors mentioned below, you have to access the link from the author's name. |
|||||||
STUDIA MATHEMATICA - Issue no. 4 / 2013 | |||||||
Article: |
THE MINIMUM NUMBER OF CRITICAL POINTS OF CIRCULAR MORSE FUNCTIONS. Authors: DORIN ANDRICA, CORNEL PINTEA. |
||||||
Abstract:
The minimum number of critical points for circular Morse functions on closed connected surfaces has been computed by the authors in [4]. Some bounds for the minimum characteristic number of closed connected orientable surfaces embedded in the first Heisenberg group with respect to its horizontal distribution are also given by [4]. In this paper we provide a more elementary proof for the minimum number of critical points of circular Morse functions and the details for the bounds on the mentioned minimum characteristic number. Mathematics Subject Classification (2010): 58E05. Keywords: Circular Morse function.
|
|||||||