![]()
AMBIENTUM BIOETHICA BIOLOGIA CHEMIA DIGITALIA DRAMATICA EDUCATIO ARTIS GYMNAST. ENGINEERING EPHEMERIDES EUROPAEA GEOGRAPHIA GEOLOGIA HISTORIA HISTORIA ARTIUM INFORMATICA IURISPRUDENTIA MATHEMATICA MUSICA NEGOTIA OECONOMICA PHILOLOGIA PHILOSOPHIA PHYSICA POLITICA PSYCHOLOGIA-PAEDAGOGIA SOCIOLOGIA THEOLOGIA CATHOLICA THEOLOGIA CATHOLICA LATIN THEOLOGIA GR.-CATH. VARAD THEOLOGIA ORTHODOXA THEOLOGIA REF. TRANSYLVAN
|
|||||||
The STUDIA UNIVERSITATIS BABEŞ-BOLYAI issue article summary The summary of the selected article appears at the bottom of the page. In order to get back to the contents of the issue this article belongs to you have to access the link from the title. In order to see all the articles of the archive which have as author/co-author one of the authors mentioned below, you have to access the link from the author's name. |
|||||||
STUDIA INFORMATICA - Issue no. 2 / 2020 | |||||||
Article: |
OVERVIEW OF RECENT DEEP LEARNING METHODS APPLIED IN FRUIT COUNTING FOR YIELD ESTIMATION. Authors: H. B. MUREȘAN, A. D. CĂLIN, A. M. COROIU. |
||||||
Abstract: DOI: 10.24193/subbi.2020.2.04 Published Online: 2020-12-09 Published Print: 2020-12-30 pp. 50-65 FULL PDF VIEW PDF Abstract. This paper is an overview of the latest advancements of image recognition for fruit counting and yield estimation. Considering this domain is developing rapidly, we have considered the cutting-edge literature in the field, for the last 5 years, focused on the task of yield estimation by detecting and counting fruit in the tree canopy. This is a much more complex task than the classification of fruit post-harvesting, which has been more widely reviewed. Moreover, we identify the major challenges and propose the next steps for advancing this research field. Received by the editors: 10 November 2020. 2010 Mathematics Subject Classiffication. 68T45. 1998 CR Categories and Descriptors. I.4.8 [Image Processing and Computer Vision]: Scene Analysis - Object recognition; I.2.6 [Artificial Intelligence]: Learning - Connectionism and neural nets; I.2.10 [Artificial Intelligence]: Vision and Scene Understanding - Intensity, color, photometry, and thresholding. Key words and phrases. smart-agriculture, deep learning, yield estimation, transfer learning, intersection over union, F1-score. |
|||||||
![]() |
|||||||
![]() |