
INFORMATICA
4/2012

YEAR Volume 57 (LVII) 2012
MONTH DECEMBER
ISSUE 4

S T U D I A
UNIVERSITATIS BABEŞ-BOLYAI

INFORMATICA

4

EDITORIAL OFFICE: M. Kogălniceanu 1 • 400084 Cluj-Napoca • Tel: 0264.405300

SUMAR – CONTENTS – SOMMAIRE

N.E. Mohoub, S. Akrouf, Generating Pert Network with Temporal Constraints 3

D. Mihályi, V. Novitzká, P. Prazňák, P. Popovec, Network Routing Modelled by

Game Semantic... 19

V. Niculescu, D. Lupşa, R. Lupşa, Issues in Collections Framework Design 30

A. Neagoş, S. Motogna, Cross-Site Scripting Browsers' Protection Analysis 39

M. Lupea, D. Tătar, Phonemes Versus Geometric Properties in Clustering of Poems .. 55

I.M. Bocicor, A Study on Using Reinforcement Learning for Temporal Ordering of

Biological Samples ... 63

L. Ţâmbulea, A.S. Dărăbant, A. Navroschi-Szasz, Redundant Spatial Index for

Solving Range Queries ... 75

G.S. Cojocar, Aspect Mining. Past, Present, Future .. 85

L. Dioşan, A. Rogozan, How the Kernels Can Influence Image Classification

Performance ... 97

O. Pârvu, S.M. Dragoş, Building Intelligent Knowledge Management Systems 110

I. Badarinza, A. Sterca, Clustering, Tiered Indexes and Term Proximity Weighting

in Text-Based Retrieval .. 122

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LVII, Number 4, 2012

GENERATING PERT NETWORK WITH TEMPORAL

CONSTRAINTS

NASSER EDDINE MOUHOUB(1) AND SAMIR AKROUF(2)

Abstract. A scheduling problem is organizing in time a set of activities,
so as to satisfy a set of constraints and optimize the result. The temporal
constraint modifies the project scheduling, therefore in loses its character-
istics. Our objective is to solve this problem by finding the various types
of temporal constraints then modeling them by using graphs. Furthermore
we apply a technique for transforming an AoN graph (Activities on Nodes)
which is unique and contains a significant number of arcs. This graph is
not preferred by practitioners of project management. We transform the
AoN graph into an AoA graph (Activities on Arcs) which contains fewer
arcs and is preferred by practitioners of project management. In this paper
we present some concepts of line graphs and an illustrative example of the
proposed method.

1. INTRODUCTION

In project scheduling problems, operational monitoring activities are very
important. The project manager draws up the schedule by using graphs. The
drawing of AoN (Activities on Nodes) graph also called potential graph or
French graph is easy because of its uniqueness despite the large number of arcs
it generates. Besides the AoA (Activities on Arcs) graph also called PERT
network or American graph is more difficult because of the dummy arcs it
generates. However, practitioners prefer to work with the AoA graph because
it is easy to read; each activity is represented by an arc. Specialists who insist
on using the AoA graph have a number of arguments to justify their choice.
This is why according to Fink et al. [1], it is more concise. Furthermore,
Hendrickson et al. [2] explains that it is close to the famous Gantt diagram.
According to Cohen et al. [3], the structure of the PERT network is much
more suitable for certain analytical techniques and optimization formulations.

Received by the editors: June 3, 2012.
2010 Mathematics Subject Classification. 90B35, 90B10.
1998 CR Categories and Descriptors. G.2.2 [Discrete Mathematics]: Graph Theory –

Graph algorithms.
Key words and phrases. AoA network, AoN network, PERT network, Project scheduling,

Temporal constraint.

3

4 NASSER EDDINE MOUHOUB AND SAMIR AKROUF

However, the major disadvantage of this method is in the existence of dummy
arcs (see figure 3. (a) and (b)). Their number is likely to be significantly high
especially if the size of the network is too large, thus the AoA graph is not
unique. In this paper, we focus on finding a method to move from a simple
graph (AoN graph) to an AoA graph that will be correct and will respect
the scheduling table taking into account prior and temporal constraints. This
method will be a draft for the construction of an algorithm that will achieve
the transition from the AoN graph to the AoA graph taking into account the
temporal constraints.

2. THE PROJECT SCHEDULING

The constraints to which are subjected the various activities, and con-
tributing to the realization of the project, are of various types. We distinguish
the potential constraints, disjunctive and cumulative constraints. The poten-
tial constraints are the following:

• The constraints of anteriority according to which an activity j cannot
start before an activity i is finished, for example, the construction of
the pillars follows the foundations
• Temporal constraints which means that a given activity i cannot begin

before an imposed date, or that it can be completed after an imposed
date.

The problem of scheduling with only potential constraints is called project
scheduling problem. Lacomme and al. Paper [4] presents the two conventions
which are used in practice for displaying project networks:

2.1. Activity on node graph (AoN). Each activity is represented by a
node in the network. A precedence relationship between two activities is
represented by an arc or link between the two (see Figure 1). This graph
is called the Activity on Node graph (AoN graph).

Figure 1. The activity u, with duration t(u), precedes the
activity v.

GENERATING PERT NETWORK WITH TEMPORAL CONSTRAINTS 5

2.2. Activity on arc graph (AoA). Each activity is represented by an arc
in the network. If activity u must precede activity v, there is an arc from u
to v. Thus, the nodes represent events or ”milestones” (e.g., “finished activity
u”) like in Figure 2. This graph is called the Activity on Arc graph (AoA
graph) or PERT graph.

Figure 2. The activity u precedes the activity v in PERT graph.

The representation of Table 1 (Figure 3. (a)) in PERT graph, is false; to
correct it we introduce an additional activity of duration 0 which does not in-
fluence over the total duration of the project. This activity is called a dummy
activity. We then modify the table (see Table 2) of scheduling and the PERT
graph (figure 3. (b)) the drawing will be easy.
The introduction of the dummy activities gives the possibility to solve certain
situations and raise ambiguities. They do not take in consideration any ma-
terial or financial mean [5].

Code Predecessors
c a,b
d b

Table 1. An-under table of precedence of c, d.

Figure 3.(a). The problem of representation in PERT graph.

6 NASSER EDDINE MOUHOUB AND SAMIR AKROUF

Code Predecessors
c a,f
d b
f b

Table 2. The new under-table of precedence of C, D and F.

Figure 3. (b). Introduction of the dummy activity f and the
representation in PERT graph.

For more details for these two methods and their differences, the reader can
refer to [6], [7] and [8]. The study of this field is not only in order to facilitate
the task to experts, but also for theoretical interests, these are always renewed
by the researchers. We can remind that the durations are not mentioned on
the different graphs. These durations can be uncertain. For this precise case,
there are more details in [9], [10] and [11].

3. THE LINE GRAPH OF GRAPH

Let G = (X,U) a simple or multiple digraph. We build starting from
G a graph or line graph noted L(G), called line graph or line digraph of
G as follows: The arcs of L(G) are in bijective mapping with the nodes of
G for simplicity reasons; we give the same name to the arcs of G and the
corresponding nodes of L(G). Two nodes u and v of L(G) are connected by
an arc of u towards v if and only if the arcs u and v of G are such as the final
end of u matches with the initial end of v, i.e. T (u) = I(v) [12] (see Figure 4).

3.1. Example. Let G the following directed acyclic graph be (Figure 4): By
definition, any directed graph G admits a unique line graph L(G). On the
other hand, two non isomorphs directed acyclic graphs can have the same line
graph.

GENERATING PERT NETWORK WITH TEMPORAL CONSTRAINTS 7

Figure 4. A graph G and his line graph L(G).

3.2. The opposite problem. We suppose the following opposite problem:
Being given a directed acyclic graph H, is it the line graph of any directed
acyclic graph? In other words, does there exist a graph G such as L(G) is
isomorphs with H, where H = L(G)?

G admits a configuration “Z” if G contains four nodes a, b, c and d such
as if (a, c), (b, c) and (b, d) are arcs of G, then (a, d) is not an arc of G. With
an only aim of simplicity, one will give the name of bar of “Z” to arc (b, c) (see
Figure 5) [13].

Configuration “Z” appears when two nodes have common successors and
no common successors or by symmetry when two nodes have common prede-
cessors and no common predecessors.

Figure 5. The configuration “Z” and his forms.

3.3. Theorem. The line graphs have been studied but we will present, in this
section, the features in which we are interested and obtained from [12]. H is
the line graph of a directed acyclic graph if:

• H does not contain any “Z” configuration.
• Arcs of H can be partitioned in a complete bipartite Bi = (Xi, Yi), i =

1, ...,m, such as Xi ∩Xj = ∅ and Yi ∩ Yj = ∅,∀i 6= j.

The bipartite Bi of H are then in a bijection with the nodes also noted Bi

which are neither sources nor well, two nodes Bi and Bj of G being connected
by an arc from Bi towards Bj if and only if the complete bipartite Bi and Bj

of H are such as Yi ∩Xj = ∅ (figure 6).

8 NASSER EDDINE MOUHOUB AND SAMIR AKROUF

Figure 6. A complete bipartite B of G and the star of G.

- H does not contain any configuration “Z” and any pair of nodes having
common successors has all their common successors.
- Any pair of nodes having common predecessors has all their common prede-
cessors. For more details on this theorem, the reader can refer to [12].

Thus, H is not the line graph of any directed acyclic graph if and only if
there is a pair of nodes having common successors and no common successors
or common predecessors and no common predecessors [5].

4. GENERATING AOA GRAPH

Because of the facility of the use of AoA graph, we must concentrate
our efforts on the study of the possibility of transforming the AoN graph (a
significant number of arcs) to AoA graph (a reduced number of arcs).
So, we want to know how to transform the graph H (which is an AoN graph)
in order to get a new graph which is the line graph (AoA graph). According to
[5], the difficulty which arises is to know if H does contain “Z” configurations
or not? If it does not, it is a line graph and the transformation is immediate
(as in Figure 7).

Code Predecessors
b1 a1, ..., am
. ..
bn a1, ..., am

Table 3. The sub-table of anteriorities.

Figure 7. (a): The complete bipartite B in the AoN graph.

GENERATING PERT NETWORK WITH TEMPORAL CONSTRAINTS 9

Figure 7. (b): The star B of the corresponding AoA graph.

But if it contains “Z” configurations, we have to eliminate the bare from
each “Z” preserving the constraints of succession. We then introduce, in the
AoN graph, a dummy arc f in every “Z” (Figure 8). The introduction of the

Figure 8. “Z” configuration, his corresponding transforma-
tion in AoN graph and the partition of the complete bipartite.

dummy arcs aims to eliminate all the “Z” configurations from the AoN graph,
the constraints remain unchanged. We should recall that the dummy arcs are
not necessary in the AoN graph but are introduced only to build AoA graph.
For more details on this transformation from AoN graph to AoA, the reader
can refer to [5] and [13].

5. THE TEMPORAL CONSTRAINTS

The temporal constraint is a time allocation constraint. She comes from
imperative management constraints such as the supply availability or time
delivery, etc.
It specifies the time interval (or semi-interval) during which it is possible to
perform or carry out an activity. These constraints are often due to availability
of stakeholders (human resources): for example a company which produces
frames can only intervene between June 15 and August 31 [1].

The temporal constraint affects the project scheduling and changes. He no
longer has the characteristics of the project scheduling. The problem therefore,
is to find a way or a technique to normalize the situation and bring it back to
the project scheduling. In the following, we will propose an original method
which allows us to model the temporal constraints and include them in project
scheduling.

10 NASSER EDDINE MOUHOUB AND SAMIR AKROUF

We can classify the most important temporal constraints into six types
and by adding the precedence constraint they become seven:

C1: Activity A starts t time units before the work begins.
C2: Activity A can only start t time units after the beginning of work.
C3: Activity B must start t time units after the end of activity A.
C4: Activity B starts a fraction of time a/b after the start of activity A

(a < b).
C5: Activity B must start t time after the start of activity A (t < tA).
C6: Activity A must start before time t.
C7: Activity B must immediately follow the activity A.

5.1. Modeling temporal constraints. In project scheduling, which is a
particularly in an AoN graph, incident arcs outside a node (that is to say an
activity) have the same value.

The presence of temporal constraints in the graph AoN violates this prop-
erty, which makes solving the project scheduling impossible. Calculating dates
and critical path research ... also become impossible.

Modeling by using graphs can solve this problem. We will present in the
following a new technique that allows handling such constraints.

The Figure 9 gives the unique representation of these constraints in the
graph AoN. It is clear that the values on the arcs incident to a node outside
are different (see the example in Figure 11. (a)). Here we leave the project
scheduling.

Figure 9. Main temporal constraints in AoN graph.

GENERATING PERT NETWORK WITH TEMPORAL CONSTRAINTS 11

Figure 10. (a). Representation of (C2) and (C3) constraints in AoA graph.

Figure 10. (b). Another Representation of (C2) and (C3) constraints in
AoA graph with less activities than in (a).

Figure 10. (c). Representation of (C4) and (C5) constraints in AoA graph.

Figure 10. (d). Representation of (C4) and (C5) constraints in AoA graph
with the same number of activities as in (c).

Figure 10. (a) shows that in the AoA graph, each activity coming after
the activity A, has its own dummy arc ui. This representation is poor because
the number of dummy arcs may be very important, which clutters the graph.

12 NASSER EDDINE MOUHOUB AND SAMIR AKROUF

Figure 10. (e). type of constraints in PERT graph combining
(c) and (d).

A better representation (Figure 10. (b)) consists in gathering several
dummy arcs succeeding the real activity A and which have the same value
in a single dummy activity. Note that the dummy arc in this context is not of
zero duration. She is introduced to solve this problem and introduce the time
constraints in the project scheduling.

For constraints of type (C4) and (C5), we notice that both starts after the
beginning of activity A. Representation in AoA graph implies the segmentation
of A into several tasks, in the general case (A = A1 + A2 + ... + Aq+1). Two
models of these constraints are possible (figure 10 (c). and 10. (d)). We note
that the representation of figure 10. (d) is more convenient.

Finally, we can combine the figure 10. (b) and 10. (d) keeping in mind
the idea of minimizing dummy arcs.

In conclusion, to arrive to figure 10. (e) we must modify in the AoN
graph, the arcs incident outside a vertex and who do not have the same value,
by introducing dummy arcs of length 0 in order to partition the complete
bipartite graph with AoN graph. All these combinations lead us to the changes
made in the two graphs AoA and AoN respectively (figure 11)

Correspondence between the representations of temporal constraints in
AoN graph and in AoA graph is our goal, we modify figure 9 in figure 11. (a)
and figure 10. (e) in figure 11. (b).

The introduction of activities f2, ..., fk of times t2 − t1, ..., tk − t1 has the
advantage of giving the same value to the arcs of the same initial node in
the graph AoN. There is no difficulty to verify that the arcs of the graph
(Figure 11. (a)) are partitioned into a complete bipartite graph and that is
the associate graph of the graph in Figure 11. (b).

For example, Let A be an activity of duration 5 time units. Suppose that:
A precedes B,

GENERATING PERT NETWORK WITH TEMPORAL CONSTRAINTS 13

Figure 11. (a). modification in AoN graph.

Figure 11. (b). Activity A is subdivised as (A1, f1) in AoN
graph. Arcs of the same initial node have the same value.

B1 and B2 can not start a unit of time after the start of activity A,
B3 and B4 begin only 4 time units after the start of A
B5 can not start until A is 3/4 finished,
B6 and B7 begin only 6 time units after the end of A.
In AoN graph, let us draw the arcs leaving the node A (Fig.12.):

14 NASSER EDDINE MOUHOUB AND SAMIR AKROUF

Figure 12. (a). No modification in AoN graph.

Figure 12. (b). is subdivised as (A1, f1) in AoN graph. Arcs of the same
initial node have the same value.

Figure 12. (c). No modification in AoN graph.

To illustrate what we have seen since the beginning of this paper and
to construct AoA graph from AoN graph taking into account temporal con-
straints, we consider the following example:

GENERATING PERT NETWORK WITH TEMPORAL CONSTRAINTS 15

5.2. Example. The Table 4 gives the precedence constraints.

Activity Description Predecessors Duratiion
A Site clearing 6 -
B Removal of trees 5 -
C General excavation 8 -
D Grading general area 4 A
E Excavation for trenches 3 A, B, C
F Placing formwork and 9 C

reinforcement for concrete
G Installing sewer lines 2 D, F
H Installing other utilities 8 E, F
I Pouring concrete 5 E, F

Table 4. Precedence relations and durations for a nine activ-
ity project example.

Temporal constraints are:

• B can only start 3 time units after the beginning of the work.
• C can begin only after 7 time units the work begins.
• E begins when C is executed to 3/4
• G starts 4 units of time after the end of E.

The graphs in Figure 13. (a, b, c, d) show the changes in the AoN graph, then
the AoA graph construction:

Figure 13. (a). graph from the schedule table (see Table 4.). Arcs in bold
represents temporal constraints.

16 NASSER EDDINE MOUHOUB AND SAMIR AKROUF

Figure 13. (b). AoN graph whose arcs have the same initial node have the
same value. The dummy arcs from temporal constraints gi: activities α, C, E

are divided in two activities. “Z” bars are in bold..

Figure 13. (c). The AoN graph with no “Z” configuration and whose nodes
are reorganized into levels. We can verify that the arcs can be partitioned

into complete bipartite.

Figure 13. (d). AoA graph of Table 4. Activities duration not included
(the fi “in bold” have duration zero).

5.3. Discussion. The algorithm inspired from this method finishes since the
loop is carried out only when there is a ’Z’ sub graph or a temporal constraint.
The number of ’Z’ in AoN graph is known and finite. Also, the number of
temporal constraints is known. The rest of the algorithm is a succession of
simple instructions. The complexity of the algorithm is polynomial (O(n4)).

GENERATING PERT NETWORK WITH TEMPORAL CONSTRAINTS 17

6. CONCLUSION

This work has introduced graphs associates in project scheduling problems,
with or without the presence of ’Z’ in the graph for AoN, for AoA graph
construction. He also used the modeling of temporal constraints that can be
included in the project scheduling when the resolution becomes easier thus
the calculation of dates at the earliest, at the latest, free margins, the critical
path, etc becomes possible by applying Bellman algorithm.

This work opens up perspectives, such as searching the minimal PERT
graph network in terms of dummy arcs is NP-hard or in terms of nodes. The
project scheduling with limited resources can be viewed by using modeling
with graphs.

References

[1] Fink, G.: Recherche oprationnelle et rseaux, Lavoisier, Paris,(2002).
[2] Henderckson, C., Project Management for Construction, Department of Civil and En-

vironmental Engineering, Carnegie Mellon University, Pittsburgh, PA l52l3, Version
2.2,08.

[3] Cohen, Y., Sadeh, A.: A New Approach for Constructing and Gen-
erating AoA Networks, Journal of computer science, 1-1, 2007.
http://www.scientificjournals.org/journals2007/articles/1049.htm

[4] Esquirol, P. and P. Lopez, P .: l’ordonnancement, ECONOMICA, Paris, France, ISBN
2-7178-3798-1, 1999.

[5] Mouhoub, N. E., Belouadah, H. and Boubetra A.: Algorithme de construction d’un
graphe Pert partir d’un graphe des potentiels donn, STUDIA UNIV. BABES BOLYAI,
INFORMATICA, Volume LI, Number 2, 2006.

[6] Bernard ROY, Algbre moderne et thorie des graphes, tome 2, Fascicule 3, Problmes
d’ordonnancement et ensembles de potentiels sur un graphe, DUNOD, Paris, France,
1970.

[7] A. Haga, Tim O’keefe, Crashing PERT networks: a simulation approach, 4th Inter-
national conference of the Academy of Business and Administrative Sciences, Quebec
City, Canada, July 12-14, 2001.

[8] F. Bacchus and F. Kabanza, Planning for Temporally Extended Goals. Annals of Math-
ematics and Artificial Intelligence, 22(1-2) :5-27, 1998.

[9] P. Morris, N. Muscettola, and T. Vidal, Dynamic Control of Plans with Temporal
Uncertainty, In Proceedings of the 17th International Joint Conference on Artificial
Intelligence, IJCAI-01, pages 494-502. Morgan Kaufmann, 2001.

[10] I. Tsamardinos, T. Vidal, and M. E. Pollack, CTP: A New Constrained-based Formal-
ism for Conditional Temporal Planning, Constraints journal, special issue on Planning,
8(4):365-388, 2003.

[11] Neal SAMPLE, Pedram KEYANI, Gio WIEDERHOLD, Scheduling Under Uncertainty:
Planning for the Ubiquitous Grid, Computer Science Department, Stanford University,
Stanford CA 94305, 2002.

[12] C. Heuchenne, Sur une certaine correspondance entre graphes, Bull. Soc. Roy. Sci. Liege,
743-753, 33, 1964.

18 NASSER EDDINE MOUHOUB AND SAMIR AKROUF

[13] Mouhoub, N. E., Benhocine, A. and Belouadah, H.: A new method for construct-
ing a minimal PERT network, (APM) Applied Mathematical modeling, Elsevier ISSN:
0307904X, Vol. 35, Issue: 9, 4575-4588, 2011.

(1) Department of Computer Science, Faculty of Mathematics and Informat-
ics, Bordj Bou Arreridj University, El Anasser, 34030, Algeria

E-mail address: mouhoub n@yahoo.fr

(2) Department of Computer Science, Faculty of Mathematics and Informat-
ics, LMSE, Bordj Bou Arreridj University, El Anasser, 34030, Algeria

E-mail address: samir.akrouf@gmail.com

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LVII, Number 4, 2012

NETWORK ROUTING MODELLED BY GAME SEMANTICS

DANIEL MIHÁLYI, VALERIE NOVITZKÁ, PETER PRAZŇÁK,
AND PETER POPOVEC

Abstract. An important task in network routing is to find the best path
for message passing through the computer networks. In our paper we show
how network routing can be described by linear logic formulae and modeled
as a game tree in terms of game semantics.

1. Introduction

One of the primary needs of routing in computer networks is to state the
best path for delivering a message from a sender to a receiver with respect to a
given network topology. Presently, information about available paths are dy-
namically actualized in every router and it is stored in dynamic routing tables.
The best way is determined according to an actual situation in a network by
executing appropriate algorithm returning a value of the least metrics com-
puted from path cost, channel capacity and speed, eventually response time
and other parameters. From the computer network’s point of view, a choice
of the best path is a mostly deterministic process depending on an actual
network environment. Hovewer, a user does not have and he does not need
any information about the environment in which his message is passed to a
receiver, and the best path choice appears him as a non-deterministic process.

The aim of our paper is to propose a formal description of network routing
using an appropriate logical system in such a way that it reflects both the user’s
and enviroment’s point of view, respectively. Then we construct a model that
is illustrative enough for the best path choice.

For the description of network routing, we choose the language of linear
logic introduced by J. Y. Girard in [11]. In contrast to classical logical systems,
linear logic can express the dynamics of processes, sequentiality of particular
actions, and eventually, resource manipulation, namely space and time on

Received by the editors: June 10, 2012.
2010 Mathematics Subject Classification. 03F52, 91A40.
1998 CR Categories and Descriptors. F.4.1 [Mathematical Logic and Formal Lan-

guages]: Mathematical Logic – Computational logic; I.2.1 [Artificial Intelligence]: Ap-
plications and Expert Systems – Games.

Key words and phrases. game semantics, linear logic, network routing.

19

20 D. MIHÁLYI, V. NOVITZKÁ, P. PRAZŇÁK, AND P. POPOVEC

logical level. Linear logic has many applications in computer science. The
processes described by formulae of linear logic can be modeled by Petri nets
[18], Turing machines, special categories [21] or game semantics. There exist
several logic programming languages based on linear logic, e.g. Lygon [15],
LPP [4, 19], etc.

In our approach we exploit the special property of additive conjunction
that can be understood variously from different points of view. The author
of linear logic interpreted additive conjunction as a choice between alternative
actions conditioned by an environment. Girault in his work [14] sees the sense
of additive conjunction as a deterministic selection, i.e. a kind of deterministic
choice in a situation, where several actions are available but only one of them
can be performed. In our approach, we interpret this conjunction as a synthesis
of both previous views for the designation of the best path. This logical
connective expresses non-deterministic choice from the user’s point of view
and dependent choice from the network’s point of view arising from actual
environment.

The semantics of linear logic was formulated by various models: coher-
ent spaces, phase spaces [12], symmetric monoidal closed categories [3], game
semantics, etc. For our approach, we use the game semantics method that
models linear formulae as polarized game trees.

Game semantics is based on the game theory formulated by John Von
Neumann and Oscar Morgensen in 1944. Game theory [20] is a mathematical
discipline enabling to model real situations by games and it is used mainly in
economics. It helps to solve decision problems and to search winning strategies.
Originally, game semantics was formulated by P. Lorentzen [17] for the justi-
fication of intuitionistic logic. Game semantics was formulated in 90-ies of 20.
century and has found many applications in computer science. For instance,
modeling of interactions [1], defining semantics of various logical systems and
programming languages [8, 7], modeling and verification of software [2, 9], in
hardware design [10], in linguistics and artificial intelligence.

Game semantics for linear logic was formulated and published by many
authors, e.g. [1, 2, 5, 6, 8]. A structure used as a model of this method is a
game tree which is a suitable structure for representing behavior of computer
networks. A game tree is a directed graph without loops and its firm enables
us to see the posssible winning strategy in finding the best path from a source
to a destination.

In Section 2, we present a short overview of linear logic and we introduce
the syntax of the fragment of linear logic suitable for our purposes. Section 3
introduces the basic notions and principles of game semantics together with
an interpretation of linear logic connectives. In Section 4, we show how linear

NETWORK ROUTING MODELLED BY GAME SEMANTICS 21

logic can be used for describing network routing by linear formulae and how
its game semantics can serve for modeling network routing by game tree.

2. Linear logic

Logical systems play important role in computer science. Classical logics
(propositional and predicate logics) have their well-established applications
within description and proving of some program properties. They are of-
ten used in specification languages for stepwise refinement of specifications to
implementation, in program verification and many other areas of computer
science.

Non-classical logic, for instance temporal logic enables to state the truth
of formulae depending on time. Further modal logics enrich proposition or
predicate logics with the operators of the necessity and possibility (classical
modal logic), knowledge and belief (epistemic logic), obligation, permission
and forbiddance (deontic logic). None of these logical systems does not be able
to describe dynamics of processes running in real world already on syntactic
level. The first logical system enabling to describe dynamics of processes, their
causality and resource handling is linear logic formulated by J. Y. Girard in
1987 [11, 12]. The subformulae of the classical logic’s formulae may be either
true or false. This property is statical, the truth value of a subformula is stable
in the frame of whole formula. Therefore we can say that classical logic has
statical nature, it is suitable for description of fixed situations, but not for the
description of dynamics in real world processes. The formulae of linear logic
can be regarded as resources that can be produced and consumed. This fact
can be expressed by linear implication

(1) ϕ(ψ

where a resource ϕ is consumed after performing linear implication, which can
be denoted as linear negation ϕ⊥. A resource ψ is produced by performing
linear implication (1). For instance, if we would like to travel by a train
we must to have some amount of money ϕ for buying a ticket ψ. After an
execution of this process ϕ(ψ, our amount of money is consumed, ϕ⊥, but
we obtain a new resource, a ticket ψ.

Linear formulae can be regarded also as actions. In this case linear impli-
cation expresses causality. An action ϕ is a cause of an action ψ.

Linear logic introduces new logical connectives. In this paper we use a
fragment of linear logic with the following syntax:

(2) ϕ ::= 0 | 1 | > | ⊥ | p | ϕ⊗ ψ | ϕ(ψ | ϕ N ψ | ϕ ⊕ ψ | ϕ O ψ | ϕ⊥

22 D. MIHÁLYI, V. NOVITZKÁ, P. PRAZŇÁK, AND P. POPOVEC

where

• p denotes atomic actions without internal structure;
• ϕ⊗ψ is multiplicative conjunction expressing that both actions ϕ and
ψ are performed. The neutral element of this logical operation is the
constant 1;
• ϕ(ψ is linear implication where action ϕ is a cause of an action ψ;
• ϕ N ψ is additive conjunction expressing external non-determinism.

Only one action is executed depending on environment. The neutral
element of this logical operation is the constant >;
• ϕ ⊕ ψ is additive disjunction expressing also the execution of one

action, but we do not determine which one will be performed. Addi-
tive disjunction expresses internal non-determinism, it is a dual logical
operation to additive conjunction. The neutral element is the constant
0;
• ϕ O ψ is multiplicative disjunction expressing: if ϕ is not performed

then ψ is performed and vice versa;
• ϕ⊥ denotes linear negation, it expresses that after performing an action
ϕ the reaction ϕ⊥ arises. Linear negation is involutive i.e. ϕ⊥⊥ ≡ ϕ.

3. Game semantics

In this section we formulate the semantics of our fragment of linear logic
in terms of game semantics. We use dialogue games where two players partic-
ipate: a proponent and an opponent. The notion game denotes a collection
of rules how to play it. An actual performing of a game according these rules
we call a game session. The aim of a game session is to find winning strat-
egy i.e. a sequence of moves of proponent and opponent leading to success.
Sometimes, a move of a proponent or an opponent is called a half move, if we
are interesting only in winning strategy for a proponent. In the case of linear
logic a proponent efforts to prove the truth of formula, an opponent efforts to
deny the validity of this formula. A winning strategy is a sequence of moves
leading to the success of proponent, i.e. to proving formula’s validity.

Game semantic provides very useful graphical representation of a game
session called game tree. A game tree is a pair

(3) T = (V,A)

i.e. a directed graph consisting of a set of vertices V and a set of arrows A.
A game tree for our fragment of linear logic is a digraph without loops. The
vertices represent the positions in a game session and the arrows represent
the moves of proponent and opponent. A game session is represented by a
path from the root to the leaves in a game tree. We are looking for winning

NETWORK ROUTING MODELLED BY GAME SEMANTICS 23

strategy, i.e. a path in game tree, which leads to the win of a proponent.
The root of the game tree is the starting point of a game session. The leaves
contain information about its success or non-success.

We formulate the game semantics of our fragment of linear logic as follows:
every logical connective can be translated to a fragment of a game tree.

Additive conjunction ϕ N ψ expresses dependent choice that can be in-
terpreted as a half move of a proponent drawn by the dash lines in Figure 1.
The vertice ϕ N ψ has two sons reflecting the situation that only one of the
actions ϕ and ψ will be executed. A decision, which of them will be performed
depends on proponent or implies from the environment.

ϕ N ψ

ϕ
�

ψ

-

Figure 1. Interpretation of additive conjunction

In the case of additive disjunction a process can follow also only with one
action but a proponent cannot predict with which one. Additive disjunction
can be translated to the fragment of a game tree in Figure 2.

ϕ⊕ ψ

ϕ
�

ψ

-

Figure 2. Interpretation of additive disjunction

To translate multiplicative conjunction ϕ⊗ψ to a fragment of a game tree
is harder. Multiplicative conjunction expresses that both actions ϕ and ψ will
be performed. Which of them will be performed as the first depends on a
proponent’s decision. Figure 3 reflects this idea.

Multiplicative disjunction ϕ O ψ expresses a situation: if ϕ is not per-
formed then ψ is performed or if ψ is not performed then ϕ is. A fragment of
a game tree for multiplicative disjunction is in Figure 4.

24 D. MIHÁLYI, V. NOVITZKÁ, P. PRAZŇÁK, AND P. POPOVEC

ϕ⊗ ψ

ϕ
�

ψ

-

ψ
?

ϕ
?

Figure 3. Interpretation of multiplicative conjunction

ϕ O ψ

ϕ⊥
�

ψ⊥

-

ψ
?

ϕ
?

Figure 4. Interpretation of multiplicative disjunction

Linear implication ϕ (ψ expresses causality, i.e. an action ϕ is a cause
of an action ψ. Following this idea, linear implication can be translated to the
fragment of game tree in Figure 5.

ϕ

ψ
?

Figure 5. Interpretation of linear implication

NETWORK ROUTING MODELLED BY GAME SEMANTICS 25

Figure 6. Sending a message trough a network

In the syntax of our fragment of linear logic we do not consider expo-
nentials. The exponentials !ϕ and ?ϕ enable to express inexhaustibility and
potential inexhaustibility, respectively. Translation of these operators intro-
duces loops into the game trees which become directed graphs with loops and
they are not suitable for our approach.

4. Example: Network routing

In this section we present a simple example of network routing. We show
how this problem can be formulated by linear formulae and modeled by game
semantics.

We assume a network in Figure 6 consisting of seven routers denoted
by Router1, Router2, . . . , Router7 and three servers Server1, Server2 and
Server3. We consider a case that Server1 sends a message trough this net-
work to Server2. We are interesting in all possible paths from a source server
to a target server. This situation is resolved at 3rd layer of OSI model - at
network layer - where routing protocols are defined. Information about the
possible paths in a network are stored in the routing tables that can be

• static routing tables or
• dynamic routing tables.

If the static routing tables are used, a message follows the path stated
explicitly by network administrator. In a case of dynamic routing tables, the
passing paths are actualized depending on an interconnection state between
the adjacent routers. If some path is not accessible either of overloading or
connection interruption, one of the other accessible paths is selected.

In the first step, we specify this problem using linear logic. We denote by

26 D. MIHÁLYI, V. NOVITZKÁ, P. PRAZŇÁK, AND P. POPOVEC

• pi, i = 1, . . . , 7 express the i-th router in our network;
• pi (pj is linear implication expressing that a router pi sends the

message to the router pj directly, i.e. pi and pj are neighbouring and
interconnected;
• assuming dynamic routing tables, linear additive conjunction pi N pj

expresses that a message proceeds either to the router pi or pj . That
means both routers are accessible but a user cannot predict which
path will be used. Form the network’s environment a choice is made
depending on a value of metrics.

From Figure 6 we see that several accessible paths through this network are
possible. A message enters into a network through the router p1 and outputs
from this network through the router p6. From the router p1 a message can
follow either to p2 or to p4. This move we can specify by a linear formula

(4) p1 ((p2 N p4).

Similarly, we specify how a message can follow from any router in our
network. The particular steps we can describe by the following linear formulae:

(5)

p2 ((p3 N p7)
p3 ((p5 N p6 N p7)
p4 ((p2 N p3 N p5)
p7 ((p5 N p6)

An accessible path in our network can be specified by linear implication,
for instance

(6) p1 (p4 (p3 (p7 (p6

We see that from the router p5 there is no passing path to p6, therefore
we have no linear formula starting from p5. For p6 we cannot formulate linear
implication, because a message leaves a network through this router and fol-
lows to the given server. From Figure 4 it is straightforward that every path
ending in p5 is dead end.

Using translation rules introduced in previous section, for every formula
in (4) and (5) we can construct a game tree in Figure 7. The root of this game
tree is an antecedent of linear implication p1 with one son, the succedent of
implication p2Np4. This vertice has two sons p2 and p4 representing dependent
choice. Applying this consecution for every vertice we get a game tree where
leaves are either p6 or �. The path ending with p6 is passing path, a sended
message successfully passes through our network. The paths in game tree end-
ing with � indicate dead ends, i.e. these paths cannot be used for transporting

NETWORK ROUTING MODELLED BY GAME SEMANTICS 27

Figure 7. Game tree for network routing

28 D. MIHÁLYI, V. NOVITZKÁ, P. PRAZŇÁK, AND P. POPOVEC

a message through our network successfully. If we simplify a value of metrics
as a number of hops, we obtain this information from a path’s deep in a game
tree. From Figure 7 we see that the shortest path is p1 (p2 (p3 (p6 and
it is the best path for routing in our network.

5. Conclusion

In our paper we present an illustration how network routing can be de-
scribed by formulae of linear logic and modeled by game semantics. We define
interpretation of linear connectives by the fragments of game tree. Our ap-
proach seems to be appropriate to specify dependent choice of the best network
path from a game tree.

In our further research we would like to extend our approach by including
exponentials to our fragment of linear logic expressing that some actions can
be potentially used repetitiously. Another extension cane be done by labeling
moves by metrics values computed by some version of Dijkstra algorithm.
We hope that our approach enriched with exponentials can be suitable for
specifying and modeling reliable program systems.

6. Acknowledgement

This work was supported by the Slovak Research and Development Agency
under the contract No. APVV-0008-10 ”Modelling, simulation and implemen-
tation of GPGPU-enabled architectures of high-throughput network security
tools.”

This work is the result of the project implementation: Cen-
ter of Information and Communication Technologies for
Knowledge Systems (ITMS project code: 26220120030)
supported by the Research & Development Operational
Program funded by the ERDF.

References

[1] Abramsky, S.: Semantics of Interaction: An Introduction to Game Semantics, In: Pro-
ceedings of the 1996 CLiCS Summer School, Isaac Newton Institute, P. Dybjer and A.
Pitts, eds. (Cambridge University Press) 1997, pp.1-31

[2] Abramsky, S., Ghica, D., Ong, L., Murawski, A.: Applying Game Semantics to Com-
positional Software Verification, Proc. of the 10th Intern.Conf. Tools and Algorithms
for the Construction and Analysis of Systems, Springer LNCS 2988, 2004, pp.421-435

[3] Ambler, S.,J.: First Order Linear Logic in Symmetric Monoidal Closed Categories,
Research Report ECS-LFCS-92-194, University of Edinburgh, 1992

[4] Banbara M., Tamura N.: Compiling Resources in a Linear logic Programming Language,
Proceedings of JICSLP’98 Implementation Technologies for Programming Languages
Based on Logics, June 1998, pp. 32–45,

NETWORK ROUTING MODELLED BY GAME SEMANTICS 29

[5] Blass A.: Is Game Semantics Necessary?, In (Boerger, E., Gurevich, Y. and Meinke, K.
eds.): 7th. Workshop Computer Science Logic, CSL’93, Springer LNCS 832, 1994, pp.
66–77,

[6] Blass A.: A Game Semantics for Linear logic, Annals of pure and Applied Logic, Vol
56, 1992, pp. 182–220,

[7] Curien P.-L.: Notes on Game Semantics, Techn.Rep.CNRS University of Paris, 2006
[8] Delande, O.: Symmetric Dialogue Games in the Proof Theory of Linear Logic, PhD.

Thesis, École Politechnique 2009,
[9] Dimovski, A., Lazic, R.: Assume-Guarantee Software Verification Based on Game Se-

mantics, Proc. on Formal Methods and Software Engineering, Springer LNCS 4260,
Macao, 2006, pp. 529–548,

[10] Ghica D.,R.: Application of Game Semantics: From Program Analysis to Hardware
Synthesis, School of Computer Science, University of Birmingham, 2009,

[11] Girard, J.-Y. : Linear Logic, Theoretical Computer Science, London Mathematical 50:1,
pp. 1-102, 1987.

[12] Girard, J-Y., Lafont, Y.,Taylor, P.: Proof and Types, Cambridge University Press
(Cambridge Tracts in Theoretical Computer Science, 7), 1990

[13] Girard, J-Y.: Linear logic: Its Syntax and Semantics, Cambridge University Press, 2003
[14] Girault C., Valk R.: Petri nets for systems engineering - a guide to modeling, verification,

and applications, Springer, ISBN 3-540-41217-4, 2003, pp. 370–382,
[15] Harland J., Pyms D., Winnikof M.: Programming in Lygon and Overview, Algebraic

Methodology and Software Technology, Springer 1996,
[16] Lafont, Y.,Streicher, T.: Games Semantics for Linear Logic, Logic in Computer Science

(LICS 91), p. 43-50, IEEE Computer Society Press, 1991,
[17] Lorentzen P.: A Dialogue Criterium for Constructivity, In Infinistic methods, Warszaw,

1961, pp. 193–200
[18] Mihályi D., Novitzká V., Slodičák V.: From Petri Nets to Linear Logic, CSE’2008,

Vysoké Tatry - Stará Lesná, 24. - 26. 9. 2008, Košice, Elfa, 2008, pp. 48-56, ISBN
978-80-8086-092-9,

[19] Miller D.: Overview of Linear Logic Programming, Linear Logic in Computer Science,
Cambridge University Press, 2000,

[20] Peters, H.: Game theory - a Multi-leveled Approach, Springer-Verlag, 2008
[21] Slodičák V.: Some Useful Structures for Categorical Approach for Program Behavior,

Journal of Information and Organisation Sciences, Vol. 35, No. 1, 2011, pp. 93–103

Technical University of Košice
E-mail address: (Daniel.Mihalyi,Valerie.Novitzka)@tuke.sk, praznak@minv.sk,,

popovec@fei.tuke.sk

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LVII, Number 4, 2012

ISSUES IN COLLECTIONS FRAMEWORK DESIGN

VIRGINIA NICULESCU, DANA LUPŞA, AND RADU LUPŞA

Abstract. A good framework/library can reduce the cost of developing an ap-

plication. This study is an exploration of issues related to designing collections

frameworks by analyzing the existing approaches and by emphasizing the fun-
damentals and the main desiderata of such developments. The corresponding

theoretical concepts are analyzed, and for defining data structures an approach

based on properties is discussed. Also, some design leading questions are specified
in order to emphasize possible new development approaches.

1. Introduction

In the imperative programming setting data structures represent an old and a
very important issue. So, different libraries and frameworks have been built in time,
based on different programming paradigms.

Initially, the focus was on the structure of the data and on different strategies
used for their representation into the memory. The behavior of such a structure was
not strictly defined since anyway, the encapsulation of the data with the operations
was not yet possible.

By introducing the concept of abstract data type [2], data structures were defined
in a more accurate and formal way, by introducing well defined types. A step forward
has been done on this subject with object oriented programming (OOP) - a higher
order of abstraction being achieved.

Based on OOP we may not only define generic data structures by using type or
parametric polymorphism, but also we can separate the definitions from the imple-
mentations by using interfaces [9]. Design patterns ([5], [7], [8]) moved things forward,
and introduced more flexibility and reusability for data structures.

Genericity is another important issue related to the field of data structures. Any
kind of data structure for a collection is formed by a number of elements which are
usually of the same type. A specific collection has properties and behaviour which
are not dependent on the type of its constitutive elements. So, generally, we may
consider them as shape-dependent structures. When properties such as sorting are
introduced they could became value-dependent structures.

Received by the editors: September 12, 2012.

2000 Mathematics Subject Classification. 68P05.
1998 CR Categories and Descriptors. E.1 [Data]: Data Structures; E.2 [Data]: Data Storage

Representation .
Key words and phrases. data structures, collections frameworks, genericity, representation.

30

ISSUES IN COLLECTIONS FRAMEWORK DESIGN 31

1.1. Motivation and organization of this paper. Our purpose is to investigate
the possibility to create a good framework/library for working with collection data
structures.

It is well known that a good framework can reduce the cost of developing an
application by an order of magnitude because it lets you reuse both design and code.
To consider the problem of software reuse in the moment of the design is not an easy
task. A nice description of what this means is made in [10]: ”Developing reusable
frameworks cannot occur by simply setting down and thinking about the problem
domain. No one has the insight to come up with the proper abstractions. Domain
experts won’t understand how to codify the abstractions that they have in their heads,
and programmers won’t understand the domain well enough to derive the abstractions.
In fact, often there are abstractions that do not become apparent until a framework
has been reused.”

Collection class libraries have been criticized as being too unwieldy, too inflexible
and generally difficult to use [16]. It has been pointed out, for example, that to
provide for future flexibility the introduction of many incrementally different types is
needed, but huge hierarchies are hard to understand and to use [11].

On short, a good framework is one that makes the programmers job easier and
programs better [16]. Much of the engineering effort should go into the design of
the class and the type system [11]. A clean, good design would keep things easy to
implement and easy to use. In order to achieve this, our research investigates basic,
fundamental properties of collection.

In order to make a fundamental analysis on the collections design we start with
a short presentation of collections (Section 2). Section 3 collects some important
research leading questions. We analyze existing solutions in Section 4 and Section
5. In Section 4, we present programming paradigms used by two existing solutions
and emphasize their advantages and disadvantages. In Section 5, we examine some
existing approaches for designing collections framework and compare them with our
ideas.

2. Important issues regarding collections

2.1. Collection and containers. The term container in modern computer program-
ming can actually refer to many things. A container is an object created to hold
other objects. While the term container is used in C++ STL to denote collection
containers, Java programmers use the term “collections” rather than “containers”.
We may consider that the meaning of “container” term is more related to the storage,
and the term “collection” is more related to the represented concept.

In this paper, we are going to use the term collection. Exceptions are situations
when we are presenting concepts or terminology used by C++ STL.

Java documentation [1] says that a collection is sometimes called a container
and it is simply an object that groups multiple elements into a single unit. Collections
are used to store, retrieve, manipulate, and communicate aggregate data.

32 VIRGINIA NICULESCU, DANA LUPŞA, AND RADU LUPŞA

Collection Alternate
names

Remarks

Bag multiset, collec-
tion

admit duplicate elements

Set no duplicate elements
Sequence list elements are arranged in a strict linear order;

order information has nothing in common with the
elements themselves; it is provided as separate in-
formation within operations (when needed)

Stack specific: insertions/extractions are made follow-
ing a fixed (predefined) strategy: Last In First Out
(LIFO);

Queue specific: insertions/extractions are made follow-
ing a fixed (predefined) strategy: First In First Out
(FIFO);

DeQueue specific: insertions/extractions can be made
to/from both ends

Map unique associa-
tive container,
associative ar-
ray, dictionary

elements are of type (key, value) ; keys are unique

Multimap multiple as-
sociative con-
tainer

elements are of type (key, value); keys are not
unique

Table 1. The most used collections

We present in table 1 a list of most important collections that are known as widely
used in programs, and that are provided by most collections frameworks. Collections
alternate names and some important remarks are also presented in the table.

A study of collections framework design should pay special attention to its con-
ceptual and logical foundations. A theoretical study of general collection properties
is investigated in relation with STL [17] in the next section.

2.2. Collection container properties. A property is a feature that could be added
to a data structure and then could be removed; it is something that fundamentally
characterized the data structure.

Starting from general collection container concepts presented in [17], we make an
inventory with the main properties that can make the difference between containers.

• unordered - sequence
• multiple - unique
• simple - pair
• non-associative - associative

ISSUES IN COLLECTIONS FRAMEWORK DESIGN 33

The first property can be considered as default. These are unordered, multiple,
simple, non-associative. A bag is a collection defined by using only default properties.

We should note that associative property means that we have a pair collection and
the first element in the pair is the key - that have special properties associated with
it. For example, associative containers are supposed to offer fast access to elements
based on keys. That imposes restrictions over the possible choices to implement the
collection.

Sorted is a property can be added to many collections but, in this way, they
became value-dependent structures. In this study, we are not going to include it,
since we restrain the analysis only to shape-dependent structures.

Collection sequence unique key-ed (associative)
Bag - - -
Set - yes -

Sequence yes - -
Stack used for operation specification - -
Queue used for operation specification - -

DeQueue used for operation specification - -
Map - yes yes

Multimap - - yes

Table 2. Collections and their properties

2.3. Building collections by their properties. In this section we are going to
present collections mainly based on the properties enumerated before.

We remarked that associative property is discussed only when we have a pair
collection. Associative collections support efficient retrieval of elements (values) based
on keys. That is why we are going to use only one property that we name it key-ed
instead of having pair and associative properties.

Table 2 defines the basic collections based on the considered properties.
Still, we may observe that a set can be also defined as unordered, unique and

key-ed collection. That is: the element is its key, no value is used, and we ask for
efficient retrieval of elements based on keys.

Note that some of the basic collections imply specific restrictions regarding opera-
tions. Examples are adding and extracting elements for stacks, queues, and deQueues.
Another example is the element access operation for key-ed collections. They are not
expressed by using properties. Starting from this observation we may consider an
extension of the properties set by including stack or queue element access types as
properties. But this kind of approach would lead not only to an exponential growth of
number of properties combination, but also will add, as properties, restrictions that
are usually defined at operations level.

34 VIRGINIA NICULESCU, DANA LUPŞA, AND RADU LUPŞA

3. What to consider when designing collections frameworks

In order to make a fundamental analysis on a collections framework design we
may start by putting some important research leading questions:

• Which are the fundamentals that should be considered when designing col-
lections framework? (In this paper, section 2 presents shortly collections
concepts and their properties).
• Is a hierarchical approach appropriate for developing collections framework?

(see section 4.1) Are the types that correspond to the main collections in
relations of subtyping kind only? If not, what other relations should be con-
sidered?
• What are the solutions to assure genericity? Which is best? (see section 4.2)
• How certain levels of abstractness influence collections framework properties?

(See section 4.3.) Which has to be the leading focus: the needed behavior or
the performance?

Within each of the above questions, we also have in mind the next question:

• What are the important lessons to be learn from others experience?

4. Collections framework design: a short overview of two existing
solutions

In this section we are going to analyze STL versus Java Collection Framework
(JCF) ([12], [15]). Both JCF and C++ STL provide collections frameworks. There are
a number of differences, some of them stem from the language features and philosophy.
Some other differences are simply design choices and we are not going to present them
here.

4.1. Interfaces versus Concepts. To define collections, Java [1] uses a clean sepa-
ration between interfaces: Collection, List, Set, SortedSet, Map, SortedMap and
implementations: ArrayList, LinkedList, HashSet, TreeSet, HashMap, TreeMap.

On the other hand, STL containers are all concrete classes, with no interface-
implementation hierarchy, in order to make them more efficient.

4.1.1. Problems defining a hierarchy. Java tried to classify collections based on their
properties and behaviour. But things are not straight forward and Java classifications
suffered small modifications over time. For example, Vector became ArrayList, while
Vector stayed only for compatibility and is deprecated in the current version.

Note that, even if Java language is based on only one hierarchy of classes (derived
from Object), in JCF there is not only one class hierarchy: Map is not a Collection.
In the same time, STL map and unordered map are truly containers of key-value pair
(std::pair<K,V>).

In [16] it is specified that Java Map doesn’t extend Collection by design. Collec-
tion could be made to extend Map, but forcing this, it leads to an unnatural interface.
If a Map would be a Collection, its elements should be key-value pairs, but this pro-
vides a very limited Map abstraction. There are two important problems: accessing a

ISSUES IN COLLECTIONS FRAMEWORK DESIGN 35

Figure 1. Java Collections Framework major interfaces.

value for a given key, and deletion of an entry for a given key, without knowing the
value it maps to.

4.1.2. Uniform naming scheme. STL’s containers have a uniform naming scheme,
with identical names for functions with identical roles. Note that a set of member
function names and arguments, together with their semantic, is called a concept, and
a class that actually implements those functions is said to implement the concept. As
an example, an STL container is required to have a pair of functions, begin() and
end(), returning iterators to the first element and, respectively, just after the last
element. This implicitly implies that there is an order between elements, so that we
have a first and a last element. Although the concepts are not part of the language,
but rather a convention between programmers, and there cannot exist a run-time
polymorphism based on concepts, concepts allow a compile-time polymorphism:
a function template can be parameterized on a type that implements the container
concept; thus, that function can call begin() and end() on the argument of container
type.

4.2. Genericity. Parametric genericity, initially represented in object oriented set-
ting by source code reuse mechanism as C++ templates, became more and more
popular and other object oriented languages as Java and C# enhanced their new
versions with mechanisms that offer parametric types.

In C++ the template mechanism allows us not to create a single class, but to
specify only once the pattern for creation of some classes that are different only by
the type of some parameters. The template mechanism allows a very high degree of
flexibility, but it is considered in some literature not a really parametric polymorphism
mechanism since for each actual parameter a new class is created.

The mechanism which was included in Java since JDK 1.5 is considered more effi-
cient since just one class is created for each parameterized class. Also, the mechanism

36 VIRGINIA NICULESCU, DANA LUPŞA, AND RADU LUPŞA

of parameterized Java classes allows bounded polymorphism – the specification of a
certain behavior of parameters by interface implementation.
A similar mechanism is implemented in C# too.

A comparison between C++ templates and the extensions for generics of the C#
and Java languages based on their suitability for scientific computing was done in [6].
These measurements suggest that both Java(TM) and C# generics introduce only
little run time overhead when compared with non-parameterized implementations.
With respect to scientific application, C# generics have the advantage of allowing
value types (including builtin types) as parameters of generic classes and methods.
Also, in [3] there is study about the performance of generics for scientific computing
in various programming languages, based on a standard numeric benchmarks. The
conclusion was that in current implementations of generics must be improved before
they are used for efficiency-critical scientific applications.

The C++ templates mechanism is considered for implementing parametric poly-
morphism based on a “heterogeneous” approach. The “heterogeneous” approach con-
structs a special class for each different use of the type parameters. The compiled
code is fast, but the object code could become bulky since we have many different
versions of each class.

Java generics implement “homogenous” approach of the parametric polymor-
phism. Since is based on “type erasing” we have strong restrictions, and maybe
the most important is represented by the impossibility of specifying static members
for the generics.

4.3. Level of Abstractness. From the previous comparison we may conclude that
Java collections design is based on the corresponding abstract definitions (Abstract
Data Types), when STL design has more utilitarian focus. So we may conclude that
the abstraction is higher for first one. If the goal would be to establish to which extend
these approaches are the most appropriate and useful for the common developers, then
the task would be very difficult. The well trained developers may consider that the
STL approach offers rapidity and better safety. On the other hand JCF is much easier
to learn and deal with.

A low level of programming focuses on performance and usually doesn’t use an
intermediary tool as a framework. A framework design should be leaded by the
behavior but in the same time it should not ignore the performance and safety. The
choice should consider the programmer needs.

5. Some other collections frameworks approaches

There are others collections frameworks as well. The Guava project contains sev-
eral of Google’s core libraries that they rely on in their Java-based projects: collec-
tions, caching, primitives support, concurrency libraries, common annotations, string
processing, I/O, and so forth. Each of these tools really do get used every day by
Googlers, in production services [14].

There are also extensions of existing frameworks. For example, utilities available
in java.util.Collections (from JCF) are extended by fastutil by providing type-specific

ISSUES IN COLLECTIONS FRAMEWORK DESIGN 37

maps, sets, lists and queues with a small memory footprint and fast access and in-
sertion. Fastutil came up as a necessity during the development of a web crawler,
as they needed to manage structures with dozens of millions of items very efficiently
[13].

Another way to model existing collections, is to reconsider the way they are de-
fined. A collections framework based on set theory is Yet Another Collections Library
(YACL) [18]. The project YACL consider a model in which Function extends Relation
extends Set. Bags and Sequences extend Function. Hence a Function (equivalent to
Sun’s Map class/interface) is a type of Set. They build a theoretically sound collec-
tions library on the top of JCF Set: Set implements java.util.Set. All classes can be
constructed from java.util collections and maps (where applicable).

In [4], the aim is to define a collection library for Java which uses multiple inher-
itance to offer a flexible framework for defining collection types rather than providing
a complex exhaustive set of particular collection classes. They identify a small num-
ber of software engineering concepts relevant to the design of libraries of collections.
They distinguish three basic orthogonal semantic properties of collections: ordering of
elements, definition and handling of duplicate elements, definition of keys for efficient
search. They use the next properties : order (ordered, sorted, userOrdered), dupli-
cates (duplFree, duplIgnore, duplError) and search (searchable) that are intended to
extend JCF. Particular collection types should be built by using derivation and by
specifying their properties in terms of these basic types. For example, the interface
type ’Bag’ can be defined as:
interface Bag[ELEMENT] extends Collection[ELEMENT] {}
and the type ’List’ as:
interface List[ELEMENT]

extends UserOrdered[ELEMENT], Bag[ELEMENT] {}
Because we want to get an clean design, our idea is not to extend other collections,

but rather to redefine collections themselves in terms of their properties. We identified
some concepts relevant to the design of collections framework. Among them, there
are some that are present in [4]: UserOrdered as a property that we named Sequence
(in opposition with unordered), Duplicates (that is in opposition with unique, and we
named it multiple). The definition of List in [4] corresponds to our definition, but we
avoid using bag and collections in the same time. We also tried to avoid using any
reference to bag when specifying a list. We also considered one new property in our
classification (key-ed) although it was not our purpose to make an inventory of some
new and not yet existing properties, as we based our approach on STL concepts [17].

We reconsider the way collections are defined by considering small number of
software engineering concepts relevant to the design of libraries of collections.

6. Conclusions

Since in the literature there are different classifications and definitions for the
types corresponding to different collections, the existing implementation solutions -
frameworks - are also very different. The authors of this paper are conscious of,
and try to overview different initiatives. In this paper, an inventory of theoretical

38 VIRGINIA NICULESCU, DANA LUPŞA, AND RADU LUPŞA

concepts is made and existing collections frameworks are compared. We have specified
some design leading questions and for each of them we have done an analysis in
specific sections of this paper. Their role is to emphasize possible new development
approaches.

The goal of this paper is to to investigate possible approaches to the design a
good framework for working with collection data structures, by analyzing the exist-
ing solutions and by emphasizing the fundamentals and the main desiderata of such
developments.

References

[1] J. Bloch, The Java Tutorial. Trail: Collections

http://docs.oracle.com/javase/tutorial/collections/.
[2] L. Cardelli, P. Wegner, On understanding types, data abstraction, and polymorphism ACM COM-

PUTING SURVEYS, (1985).
[3] L. Dragan, S.M. Watt, Performance Analysis of Generics in Scientific Computing, Proceedings of

Seventh International Symposium on Symbolic and Numeric Algorithms for Scientific Computing

(SYNASC’05), 2005, pp.93-100.
[4] M. Evered, G. Menger, J. L. Keedy, A. Schmolitzky, A Useable Collection Framework for Java,

16th IASTED Intl. Conf. on Applied Informatics, Garmisch Partenkirchen, 1998.

[5] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable Object
Oriented Software, Addison-Wesley, 1994.

[6] J. Gerlach, J. Kneis, Generic programming for scientific computing in C++, Java, and C#.

Lecture Notes in Computer Science. Proceedings of International Workshop on Advanced Parallel
Processing Technologies (APPT) Xiamen, China, 2003, pp.301-310.

[7] D. Nguyen, Design Patterns for Data Structures, SIGCSE Bulletin, 30, 1, March 1998, 336-340.

[8] V. Niculescu, G. Czibula, Fundamental Data Structures and Algorithms. An Object-Oriented
Perspective, Casa Cartii de Stiinta, 2009 (in Romanian).

[9] V. Niculescu, Storage Independence in Data Structures Implementation, Studia Universitatis

”Babes-Bolyai”, Informatica, Special Issue, LVI(3), pp. 21-26, 2011.
[10] D. Roberts, R. Johnson, Evolving Frameworks: A Pattern Language for Developing Object-

Oriented Frameworks, in Proceedings of the Third Conference on Pattern Languages and Pro-
gramming, 1996, http://st-www.cs.illinois.edu/users/droberts/evolve.html

[11] C. Szypersky, S. Omohundro, S. Murer Engineering a Programming Language: The Type and

Class System of Sather, in Programming Languages and System Architectures, ed. J. Gutknecht,
Springer-Verlag, pp. 208-227, 1993.

[12] B. Stroustrup, M. Ellis, The Annotated Reference C++ Manual, Addison-Wesley, 1994.

[13] fastutil: Fast & compact type-specific collections for Java, http://fastutil.dsi.unimi.it/
[14] Guava project, https://code.google.com/p/guava-libraries/

[15] Generic Java,

http://download.oracle.com/javase/1.5.0/docs/guide/language/generics.html

[16] Java.The Collections Framework,

http://download.oracle.com/javase/1.5.0/docs/guide/collections/

[17] STL Programmer’s Guide, http://www.sgi.com/tech/stl/index.html
[18] YACL - Yet Another Collections Library, http://sourceforge.net/projects/zedlib

Department of Computer Science, Babeş-Bolyai University, Kogalniceanu 1, 400084,

Cluj-Napoca, Romania
E-mail address: {vniculescu, dana, rlupsa}@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LVII, Number 4, 2012

CROSS-SITE SCRIPTING BROWSERS’ PROTECTION

ANALYSIS

ADRIANA NEAGOŞ AND SIMONA MOTOGNA

Abstract. The purpose of this paper is to present an overview upon
the protection methods browsers provide against cross-site scripting, as
an important security vulnerability. Time has imposed different measures
and competitors on the browsers market had to keep track. The study
has three goals: to take into consideration versions of Internet Explorer,
Google Chrome, Mozilla Firefox and Opera, to use an established scoring
system, the Common Vulnerability Scoring System, to measure certain
vulnerabilities on each browser, and to develop a tool for web application
flaws testing.

1. INTRODUCTION

The success or failure of an application is characterized by three factors:
quality, time and cost. Software development focuses on delivering applica-
tions with minimal resources (people, software components and hardware) and
quality is not always set as an important issue. If time and cost are related to
the project management and can be changed on the spot, quality assurance is
a complex process that should not be neglected. Several studies (NASA [21],
IBM [13]) have led to an important conclusion: improving quality reduces
development costs.

Last years brought us in front of an explosion of web applications. Desktop
products are replaced by the three layer architecture of the server machine, the
client machine and the network as delivery mechanism. In these conditions,
software quality factors are changing their importance, and security becomes
an important factor because of the transactions that are made and because of
the sensitive data that is sent over the internet. In order to ensure security,
people need an evaluation scale of a software application and in consequence,

Received by the editors: October 30, 2012.
2010 Mathematics Subject Classification. 68N30, 68M11.
1998 CR Categories and Descriptors. C.2.0 [Computer-Communication Networks]:

General – Security and protection; C.4 [Performance of Systems]: Measurement tech-
niques.

Key words and phrases. Cross Site Scripting, Security.

39

40 ADRIANA NEAGOŞ AND SIMONA MOTOGNA

a lot of research, both in academia and industry, focuses on studying risks,
vulnerabilities, and attacks against security. Open Web Application Security
Project (OWASP) [22] is such an initiative, and maintains and updates a list
of top 10 security risks.

Cross-Site Scripting (XSS) is the second as importance, and considered
as having an average exploitability and a high degree of occurrence. There
are a lot of cases in which automatic tools detect this risk in an easy way,
but, however, there are some situations, generated by new technologies and
browser characteristics, that make detection more difficult.

The purpose of this article is to present an in-depth analysis of detecting
and preventing cross-site scripting vulnerabilities and their impact on soft-
ware security factor. The rest of the paper is organized as follows: Section 2
presents some of the existing related work. Section 3 contains an analysis of
XSS vulnerabilities and the main prevention methods. Section 4 focuses on
the security policies proposed by different browsers and contains a case study,
while the next section is dedicated to our evaluation of some XSS vulnerabil-
ities. The proposed tool is presented in Section 6, and in the end we draw
some conclusions and future directions of study.

2. RELATED WORK

A lot of research has been carried out in the field of XSS vulnerabilities.
Most of them focus on studying pattern attacks, evaluating risks and proposing
solutions to prevent them [14], [26], [9], but as far as we know there is no paper
comparing XSS vulnerabilities from the browsers’ point of view. Release notes
gather a sum of new features, but do not always point out the security issues
and the user does not have a proper overview of what the measures taken imply
and how does the situation look like considering the rivals on the market.

Regarding Security Evaluation and Measurement, discussed in the last
part of our paper there are several approaches. Besides the approaches carried
out at major software companies, such Microsoft, IBM, Apple a.s.o., there are
two important contributions to assessing security vulnerabilities and proposing
metrics to evaluate their impact on software quality:

• Computer Emergency Center (CERT) at Carnegie Melon University
with results in risk analysis, based on a tactical and on a systematic
approach, and security measurement, that are integrated in IMAF
(Integrated Measurement and Analysis Framework) [6].
• Common Vulnerability Scoring System (CVSS) [17] that developed a

framework that supports scoring of security vulnerabilities.

CROSS-SITE SCRIPTING BROWSERS’ PROTECTION ANALYSIS 41

3. ANALYSIS OF CROSS SITE SCRIPTING VULNERABILITIES

Cross-site scripting vulnerabilities were discovered back in 1996 when web
pages became more interactive due to a new programming language, Javascript
and were associated with the name of Netscape Communications, the most
popular browser at that moment. Even if it were first reported as Web browser
vulnerabilities, David Ross demonstrated in his paper ”Script Injection” [10]
that the problems may also come from the server side rather than from the
client. The vulnerability was first named ”HTML injection” and then referred
with the acronym ”CSS”, but the confusion with Cascading Style Sheets de-
termined in 2000 a new convention, ”XSS”.

People tended to underestimate the power of XSS, because it could not
damage the operating system or exploit a database, but the attack on October
2005, when the first major XSS worm, called the Samy Worm spread on over
a million of MySpace accounts rose the public attention.

Javascript, ActiveX, Silverlight, or Flash are lightweight programming lan-
guages used for a friendly user experience and for a more dynamic interaction
with the application. They provide code that is executed by the browser on
the client and is the way XSS is performed. Browsers execute this kind of
code under sandboxing mechanism which means that only a set of operations
should be performed, but even this protection is not enough. Michael Howard
said that ”All input is evil until proven otherwise. That’s rule number one”
[11], but in case of XSS not only inputs, but also outputs must be validated.

There are 3 types of XSS:

• non-persistent or reflected : is performed when there is no proper vali-
dation of user input through GET or POST requests and the response
page is returned immediately and is spread generally by email via ma-
licious urls;
• persistent : happens when the infected code is stored in the database

and it is a regular threat to chat software or application including dif-
ferent posts. User does not access malicious links, just regular browsing
can result into being robbed of information;
• DOM-based : results from dynamically-computed data, which means

that the browser is manipulated to render DOM elements controlled
by an attacker.

The following is an example of reflected XSS in ASP.NET web forms. We
consider a form used in a registration page in which the user is required to
input some data and then submit. The page validates the input on the server
side and then returns a message. Suppose the input requires an email address,
but this address should not have been submitted before, so this is why the

42 ADRIANA NEAGOŞ AND SIMONA MOTOGNA

validation is done on the server and not on the client. If the email address is
not valid an error message will be returned. The form looks like this:
〈form id = ”form1”action = ”#”runat = ”server”method = ”get”〉
〈div〉
〈div id = ”errorDiv”runat = ”server”〉〈/div〉
〈input id = ”myinput”runat = ”server”/〉
〈button onserverclick = ”serverClick”runat = ”server”〉Submit〈/button〉
〈/div〉
〈/form〉
Now when the user clicks submit button, function serverClick is executed:
〈script language = ”C#”runat = ”server”〉
void serverClick(Object sender,EventArgs e)
{
errorDiv.InnerHtml = ”The following is not a valid email”+
myinput.V alue + ”Please go to〈ahref =′ #′〉Help〈/a〉”;

}
〈/script〉
If the user inputs some valid data everything works just fine, but XSS can

be performed by sending the following input:
〈div onmouseover =′ alert()′〉some valid input〈/div〉
Now that an attacker sees that the page is vulnerable he may change the

javascript function executed on mouse over with some malicious code and
send the URL asking for opinion on the received error. The web page seems
trustful and the action is done on mouse over, so most of the users would not
be suspicious receiving this.

We will use the same example for the stored XSS. Suppose the attacker
has entered a valid email address, but he injected the following script in other
input:
〈script〉window.location = ”http : //maliciouspage.com”〈/script〉
In a normal scenario he should be redirected to a welcome page in which

all the other users would be shown. Still, because of the script he inserted,
script that was inserted in the database as he was careful to double the quote,
the redirection page wouldn’t be the welcome page, but his malicious site.
Now, all the users after registration would be redirected to that page.

The example presented above is just a proof of concept. It is a personal
ASP.NET web page, using Microsoft SQL Server 2008 R2 and tested on In-
ternet Explorer 9.

Monitoring and improvement in preventing web applications against
cross-site scripting follow the general steps used in avoiding vulnerabilities on
web: code review, manual testing, automated testing and implementation of
security policies on browsers, firewalls, each of them having pros and cons and
assuring security to a certain extend.

CROSS-SITE SCRIPTING BROWSERS’ PROTECTION ANALYSIS 43

3.1. Code review. There are two methods of reviewing code: a static anal-
ysis of the code when lines are reviewed without being executed or a dynamic
analysis at the runtime. It is feasible for small and middle applications, but
in case of complex products, it can be very laborious and time-consuming.
It is difficult to verify all the tainted data if, for instance, code contains dy-
namic string-building techniques and predict the application’s client state.
Best practices advise white lists for the inputs and proper encoding for the
outputs. Still, white lists are not always possible.

Any of these: Request.Params[”input”], Request[”input”], Request.Query
String [”input”], Request.Cookies[”input”], Session[”input”], Application [”in-
put”] can be sources of exploit and injection can be performed on tags like: 〈
body〉, 〈frame〉, 〈img〉, 〈html〉, 〈layer〉, 〈link〉 etc. or their attributes src, href,
style.

Programming languages provide in-built functions that perform this kind
of filters, but even Microsoft states regarding their ASP.NET method Vali-
dateRequest that one should not rely only on this type of validation because
unfortunately it is not 100 percent secure. Recent attacks prove this. Not only
ASP.NET functions have security lacks. parse url is a function in PHP that
verifies malformed urls. The function works correctly in most cases except if
whitespaces are inserted. This was the vulnerability exploited on April 2011,
on Facebook, when a malicious video was posted [25] or on CNN when urls
inserted in ad networks were source of this attack. Other exploits were done
also on The New York Times, on Twiter, e-Bay or on Fox News [15].

Microsoft offers an Anti-Cross Site Scripting Library [20] and OWASP
advises programmers to use an API: ESAPI (The OWASP Enterprise Security
API) [22] which is an open source web application security control library.

3.2. Testing. Testing any kind of input based vulnerability involves the same
pattern: detection of a flaw, injection of data and confirmation of the exploit.
A proxy can be used in order to intercept the HTTP traffic and TamperIE [4]
for modifying the GET and POST requests.

Even if OWASP [22] classified it as easy detectable, we tend to disagree
because of the variety of malicious strings: keyword 〈script〉 is not mandatory
when code is inserted in body as attribute or event, quotes and double quotes
can be alternated, whitespaces inserted or the statements can be encoded such
that they are skipped by the filters such as:
〉′′′〉〈script〉alert(′XSS′)〈/script〉
〈object type = text/htmldata =′′ javascript : alert(([code]);′′ 〉〈/object〉
〈body onload =′′ javascript : alert(([code])′′〉〈/body〉
There are several XSS Cheat Sheets to be used while testing, but the

possibilities of injection seem infinite. Scanners and fuzzers were implemented

44 ADRIANA NEAGOŞ AND SIMONA MOTOGNA

to automate testing, Burp Suite [24], HP WebInspect [12], Acunetix [1] or
Netsparker [16] are such applications. Mainly, they use the same mechanism:
they insert a harmless string named XSS locator in the identified application
data entries, scan the output and then perform the exploit in order to confirm
the injection. The problem is that they test only using common scripts and
technologies such as AJAX or JSON are not supported as they make this
automation very difficult.

3.3. Firewalls. Runtime protection methods should also be taken into con-
sideration, even if they affect the performance of the application. Web appli-
cation firewalls(WAF’s) monitor the communication across the network and
therefore they inspect messages for Javascript and can enforce a set of rules in
order to identify and to block XSS attacks that would not reach anymore the
backend. Examples of such applications are Cisco ACEWeb Application Fire-
wall [7], NetScaler App Firewall [8] or Barracuda Web Application Firewall
[3]. Most WAF’s implement the Intercepting Filter pattern or include one or
more implementations in their overall architecture. One can also add filters
to an application at deployment when implemented as a Web server plug-in
or when activated dynamically within an application configuration.

Users should be also educated to avoid XSS exploits. Avoiding awkward
links, paying attention to redirections or for instance turning off the HTTP
TRACE can prevent the stealing of cookies.

Regardless the variety of prevention methods, new exploits continue to
attack web applications and it’s our duty to keep on protection against the
known or unknown security flaws.

4. SECURITY POLICIES

We have intentionally omitted security policies from the above protec-
tion methods in order to provide a more in-depth analysis of this concept.
XSS is the one security field that does not depend on the type of connection:
encrypted or unencrypted, but is closely related to portability and mainly
browser compatibility. Because it is rendered by different browsers, the dis-
play of a web page can be slightly different, and so its gate of access.

Same origin policy is called the policy adopted against browser-side lan-
guages that does not allow ”access to most methods and properties across
pages on different sites”. This means that the sensitive information held about
a certain user belongs and can be used only by the original site and cannot
be accessed by other bad targeted sites. It is implemented by nearly each
browser, but it does not guarantee complete security. In addition, modern
browsers implemented several security policies that block an attacker to gain
access on a client machine.

CROSS-SITE SCRIPTING BROWSERS’ PROTECTION ANALYSIS 45

Firefox and Opera are known as relatively secure, while Internet Explorer
(IE) is considered very vulnerable. A simple example is for instance when
uploading text files through IE: if HTML content is inserted in the file, it
doesn’t treat it as plain text, but it interprets it as HTML. As this is not the
most relevant example, we will try to make a fair analysis of the most used
browsers, their evolution and the measures taken against XSS attacks.

Internet Explorer 6, Firefox 4 and Opera 9.5 introduced HttpOnly cookie
attribute. It was intended to protect against retrieving information through
document.cookie, but even with this, cookie information could be accessed
through XMLHttpObject. Internet Explorer 7 made sure information was
hidden and unavailable in the response header only if it was submitted from
the same domain, but not the other browsers. ”HttpOnly cookies don’t make
you immune from XSS cookie theft, but they raise the bar considerably” [2].

Fraud Protection was called the mechanism adopted by Opera 9.5 to en-
force security. It was a tool powered with phishing information from Netcraft
and PhishTank, and Malware protection from Haute Secure that provided
automatic detection and warning of malicious sites and supported Extended
Validation certificates.

Starting with Internet Explorer 8, a new very controversial browser filter
for XSS has been introduced. It is similar to a proxy and the filtering is done
using regular expressions. Still, Michael Brooks describes it as vulnerable and
users claim that it also considers safe pages as potentially dangerous [5] and
Google disables it by setting the X-XSS-Protection in the header to 0 or it can
be turned off from the browser security tab. Similarly, Chrome 4 responded to
the security features included in IE 8 and introduced a static analyzer which
attempts to detect XSS, called Anti-XSS Filter. Adam Barth, a software
engineer on the Chrome team, said ”The XSS filter checks whether a script
that’s about to run on a Web page is also present in the request . . . that’s a
strong indication that the Web server might have been tricked into reflecting
the script”1. But even if it could have been considered a revolution in the
security against XSS, methods to bypass the filter’s protection and provide
full disclosure appeared shortly.

Firefox 4 came with NoScript XSS Filter, an add-on that verifies the form
of URLs. It reports if they have a suspicious content, but this without confirm-
ing the attack. It also added HTTP Strict Transport Security which informed
the browser to automatically convert all attempts to access a certain site using
HTTP to HTTPS requests instead. This was also supported by Chrome 4 and
Opera 12 Beta, but not by Internet Explorer.

1from http://jetlib.com/news/tag/adam-barth/

46 ADRIANA NEAGOŞ AND SIMONA MOTOGNA

In March 2011, together with the release of version 4, Firefox proposed the
adoption of a new layer to enforce XSS protection called the Content Security
Policy (CSP). This provides a way that helps the browser to differentiate
between legitimate and malicious content. CSP requires that all JavaScript
for a page are 1) loaded from an external file, and 2) served from an explicitly
approved host. It means inline scripts are ignored unless they are defined in a
white list. This framework is still not implemented yet on other browsers, but
Microsoft claims that it will be a feature of Internet Explorer 10.

The methods stated above and adopted by the browsers are mainly applied
against reflected XSS, as for the other two types of attack, it is not the duty
of the browser to enforce protection.

4.1. Case Study. In the following lines, we will present a simple example of
XSS attack against one of our web pages. It is an edit page that receives as
parameter the ID of a document and then using this filtering retrieves informa-
tion about that document and provides a way to modify the stored information
(available at the url http://scs.ubbcluj.ro/ naie1000/phplab/editDoc.php). Ed-
itDoc.php?ID=1 is for example a valid request, but we have also tried inserting
scripts. The simplest example
〈script〉alert(1)〈/script〉
was avoided in all browsers because of the position where ID parameter

was inserted and because of the protection provided.
First script that was successfully executed was:
′′′−〉〈/style〉〈/script〉〈script〉alert(0x000040)〈/script〉
So, let’s see how different players on the browsers market react.
Internet Explorer provides a popup at the bottom of the page saying:

”Internet Explorer has modified this page to help prevent cross-site scripting.”
and encodes characters in the url as follows:

′%22−−%3E%3C/style%3E%3C/script%3E3Cscript3E
alert(0x000040)%3C/script%3E
Opera also makes this kind of encoding, but the url is not totally visible.

The parameter is hidden and can be seen only if the user selects it on purpose.
This way, an inexperienced user can easily be fooled and trapped in some
attack of this kind. The alert appears on the page.

Firefox instead does no encoding and shows the alert without no validation.
Chrome also skips encoding, but the alert is not visible. The user is not

informed about the blocked script as in the case of Internet Explorer, but it
is protected against it.

To confirm the behavior we have tested using more different scripts and
the four browsers reacted in the same way as above.

CROSS-SITE SCRIPTING BROWSERS’ PROTECTION ANALYSIS 47

We used a harmless simple script just for example, but in the same way
the alert is executed: any script requesting for instance document.cookie or
redirecting the page to a malicious site can be inserted. We also used the
default settings of each browser for a proper analysis of the vulnerability.

5. CVSS SCORES FOR XSS VULNERABILITIES

Our case study consists in computing the CVSS vulnerability scores for
some XSS related vulnerabilities reported on the above mentioned browsers.
CVSS or the Common Vulnerability Scoring System is an open framework
that provides a numerical score by taking into consideration base, temporal
or environmental properties of a certain vulnerability.

The computation is performed according to the formula given in [17] and
the corresponding calculator 2. Each of the three metric groups has its own
characteristics and contains a set of metrics. Base metric group (Figure 1)
describes the fundamental characteristics of vulnerabilities and is composed
of the related exploit range, the attack complexity, the needed authentica-
tion level and the integrity, availability and confidentiality impact. Temporal
metrics (Figure 2) are the metrics influenced by time passing, meaning the
availability of exploit, the remediation level and the report of confidence. The
environment (Figure 3) has also an impact when computing the score; envi-
ronmental factors are the collateral damage potential, the target distribution
and the confidentiality, integrity and availability requirement.

When talking about XSS exploits some of these metrics remain constant
because of the type of this vulnerability. The related exploit range or the
access vector is the network, because the attack is widely spread over the in-
ternet and the access complexity is medium. The majority of reports describe
vulnerabilities on browsers having the standard, default configurations, but it
is medium and not low, because the attacker is required to have some social
engineering skills in order manipulate and fool custom users to access a certain
page or click a specific button or link. In order to be considered successful,
the attack has to gain information or control over the client machine and for
this at least one instance of authentication is needed. The availability impact
metric refers to the access of the attacker over the resources, meaning band-
width, processor, disk space and his possibility to get a total shut-down of
the affected resource. In case of an XSS exploit, we consider this availability
impact to be zero; it is impossible from what we know until now for someone
to access the resources using this type of vulnerability. We have intentionally
skipped the confidentiality and integrity impact because they vary depending
on the attack and we are focusing now on the constant metrics of XSS exploits.

2available at http://nvd.nist.gov/cvss.cfm?calculator&adv&version=2

48 ADRIANA NEAGOŞ AND SIMONA MOTOGNA

Figure 1. Base scores metrics

Figure 2. Temporal scores metrics

Moving to the temporal group, we will argue the chosen values to the
metrics based on the vulnerabilities reported by Microsoft on their periodical
security bulletins or by the other browsers in periodical advisories. We let
the exploitability factor set to not defined, because officially they say that
the exploitation code was not made public: ”Microsoft received information
about this vulnerability through coordinated vulnerability disclosure.”, ”Mi-
crosoft had not received any information to indicate that this vulnerability
had been publicly used to attack customers when this security bulletin was
originally issued”, while the other browsers avoid to make this kind of state-
ments naming only the person that reported the vulnerability. Moreover, all
the vulnerabilities are confirmed and are reported only after an official fix is
available.

The damage potential of an XSS vulnerability is according to OWASP
moderate. We are not talking about a physical damage, but there can be
significant loss of information. Last, but not least there are the impact re-
quirement modifiers. Browsers are meant to be secure. Confidentiality, in-
tegrity and availability are the three features users require for safe browsing
and financial transactions.

CROSS-SITE SCRIPTING BROWSERS’ PROTECTION ANALYSIS 49

Figure 3. Environmental scores metrics

The metrics that change depending on the XSS exploit are the confiden-
tiality and integrity impact and the percentage of vulnerable systems. In order
to see how these metrics differ we will consider four vulnerabilities.

URL Validation Vulnerability [18] is a critical vulnerability reported in
February 2010 that appeared from incorrectly validated input. It provided the
attacker access to the client machine with the same rights as the logged in user
and if the attacker could reach administrative rights, he could install programs,
read or change data. In this case, because remote code could be executed,
the confidentiality and integrity impact is complete. Regarding the target
distribution, which was Internet Explorer, it was reported as vulnerability on
IE 7 and 8 which at that time covered 35.3 % of the market, so medium spread.
The score in this case reaches 6.3.

Before the release of 10.63, Opera reported the existence of the following
vulnerability: Reloads and redirects can allow spoofing and cross site scripting
[23]. It allowed bypassing the same origin policy and execution of scripts in the
wrong security context. One might also change configurations in the browser
and gain access to the target computer. Opera, which then achieved a number
of 2.1 %, described the vulnerability as critical, because the confidentiality and
integrity impact was complete. Although the high impact, the flaw is rated
with 2.1 because of the low spread.

ChromeHTML URI handler vulnerability is a vulnerability reported on
Chrome on April 2009. It implied execution of arbitrary URI without any user
interaction and could allow information leakage such as stealing of victim’s
cookies and directories and files disclosure, so confidentiality and integrity
impact was just partial. It affected and was fixed on Chrome 1.0 targeted at
that time with 4.9 % on the market. CVSS score in this case is 1.8.

March 13, 2012 brought to public’s attention a vulnerability of the Con-
tent Security Policy implemented by Firefox. The vulnerability called XSS
with multiple Content Security Policy headers [19] allows header injection

50 ADRIANA NEAGOŞ AND SIMONA MOTOGNA

into Firefox 11 (36.3 %). Because Firefox did not reported remote execution
of code, confidentiality and integrity impact is considered partial and the score
is around 5.5.

Target distribution is calculated taking into consideration data provided by
http://www.w3schools.com/browsers/browsers stats.asp, related to the date
of the report.

The first remark is the importance of target distribution in calculation of
score. If it slightly varies from low to medium the score increases with at least
2 points. The second observation is that the security policies adopted cannot
face sophisticated attacks and can also provide security flaws.

These results can contribute to the evaluation of the business impact of
XSS vulnerabilities. The browser-dependent risks must be carefully treated
since they allow attackers to have end user privileges and to gain control of
the applications. The computed scores confirm the OWASP evaluation and
the position of cross site scripting vulnerabilities on their list [22].

6. Tool support

As you can probably imagine finding and testing security vulnerabilities is
not an easy task. One has to be creative and determined in order to find all the
entry points of an application and how they can bypass the validation methods
added by the developer. Web Application Vulnerability Scanners are tools
designed to automatically scan web applications for potential vulnerabilities.
They perform a range of checks, such as field manipulation and input poisoning
and enumerate the lacks found together with their target. Some of them also
provide severity classification and general protection methods. Even if some
claim differently, it seems that there is no security tool finding 100% of the
vulnerabilities and avoiding false positive.

For testing purposes and in order to automate this process of finding web
applications flaws and then try them on different browsers, we developed a
security testing tool. SecurityApp is such an application. It is a software ap-
plication designed for security vulnerabilities testing. It is a desktop solution
that requires as input the URL of the desired web application and performs
a set of tests in order to determine and confirm Cross-site scripting vulnera-
bilities. After running the tests, SecurityApp returns a report that displays
the tests that failed, the application page, the parameter to which injection
was performed and the injection string. It is an automated tool designed for
testing, but it also allows manual checking. Users can add injection strings or
can require testing of a specific page and parameters.

Briefly, the testing process follows the flow shown in Figure 4. The desktop
application performs crawling base on the input URL. This means, it sends

CROSS-SITE SCRIPTING BROWSERS’ PROTECTION ANALYSIS 51

Figure 4. Testing process flow

several requests to the web application desired to be tested and analyzes the
response by parsing the HTML code and looking for other accessible pages.
After obtaining a new web page together with its GET and POST parame-
ters, it initiates several attacks, injecting one of the parameters with strings
retrieved from the database. The response is again parsed and analyzed in
order to determine if it was successful or not.

Our work started by testing some of the available open-source or trials web
security scanning tools in order to see the results on some web applications:
ours or our colleagues and noticed that depending on the technology used
the results were different, but also there was a huge difference between the
performance, the vulnerability list and the initial configurations. One may
be able to estimate the general capabilities of a scanner from the amount of
REAL exposures that are located, the amount of exposures that are missing
(false negatives) and from the amount of FALSE exposures (false positives)
are identified as security exposures. The main focus is in not missing the
present vulnerabilities so all the tested applications returned false positives or
reported their occurrence as highly possible.

Because it addresses a certain type of vulnerability, SecurityApp performes
an increased number of tests and tries to avoid the false positives by calcu-
lating a percentage of successful exploits for each parameter. The higher the
percentage is, the more vulnerable that entry point is.

SecurityApp is a Windows forms application developed in .Net Framework
4. It performs crawling and cross-site scripting and it retrieves and stores data
in a Microsoft SQL Server database. It consists of a set of modules used for
different purposes: access to the database, models, user interface, crawling
and XSS exploit.

Crawling is done based on the input given URL using the HTML Agility
Pack library that allows reading and writing of DOM. It is an HTML parser
supporting XPATH and XSLT for an easier interaction with the DOM objects.

52 ADRIANA NEAGOŞ AND SIMONA MOTOGNA

Parsing is performed regardless the strict format of the HTML, so it is very
tolerant to small errors in a malformed HTML response. Briefly, based on a
string corresponding to an URL, it loads in the HtmlDocument the response
received. The document is then used for manipulation. One might search for
all DOM objects of some type or for all nodes having certain attributes. It
may parse the children, check out for different values or add several nodes,
attributes or events. XSLT is used for transforming XML documents and
XPATH is used for addressing and referring parts of an XML document.

Considering these, we used HTML Agility Pack and XPATH to facilitate
the parsing of the received response and collect all the referred links. We have
checked for tags and forms. In case of a tag, we considered the href attribute
and in case of forms the action attribute. If a form had no action attribute it
meant the submit would be done to itself.

Before sending the request for the new page, we have checked that the
page belonged to the domain. If for example, a web page had a link for Face-
book authentication, Facebook application should not be tested. SecurityApp
is meant for personal sites testing and not finding vulnerabilities over the
internet.

Exploit operation for XSS is done using a web page and the injection scripts
from the database. The application takes each parameter of the page and
constructs a request for the page using an injection script and the parameters.
Just one parameter is injected at a time in order to find the exact place of the
page vulnerability. Parameters are sent via GET or POST and if not being
exploited, they get the initial value or a default one. The strategy used is to
construct scripts that can also bypass basic input sanitization:

• sanitize for apostrophe or for quotes, but not both
• avoid script tag 〈SCRIPT〉, but use ”javascript:” (specifier can also be

used in HTML links)
• no use &, 〈, 〉 , # or ; characters
• no script tag 〈SCRIPT〉 or use of ”javascript” (successful when used

in concatenations)
• encoded validation skip.

In order to confirm the vulnerability, the response page is analyzed. Each
inserted script is expected to be found in the response, but in a certain place
and having a certain format, if not the parameter must have been sanitized
and the exploit was not successful.

The results are stored in the database for further processing in reports.
The tool is in the early stages of development and have been design in order to
offer an easy-to-use tool for testing the vulnerabilities for our own purposes.

CROSS-SITE SCRIPTING BROWSERS’ PROTECTION ANALYSIS 53

Although several such tools exists, our application proved to be more efficent
for our research purposes, due to its specificity.

7. CONCLUSIONS AND FUTURE WORK

The paper gives an overview of XSS vulnerabilities from a browser point
of view. We studied the impact of URL Validation Vulnerability on Internet
Explorer. Reloads and redirects can allow spoofing and cross site scripting on
Opera, ChromeHTML URI handler vulnerability and XSS with multiple Con-
tent Security Policy headers vulnerability on Firefox. We have used the CVSS
vulnerability scoring formula in order to measure the impact of these vulnera-
bilities on security and the obtained results confirm the OWASP analysis, for
exploitability and impact.

It is our opinion that XSS vulnerabilities should be carefully treated and
prevented. A combined protection approach involving writing secure code,
proper testing and request validation made by the browser could eliminate
most of the XSS attacks and improve significantly the security of each appli-
cation.

As future direction of our study, we intend to analyze other forms of XSS
vulnerabilities that are more difficult to perform and detect. We will continue
testing ActiveX and Silverlight on Internet Explorer and Flash on the other
browsers. We also intend to modify the default settings regarding security in
each browser and observe the changes in behavior.

As part of our research we also develop a security testing tool that mea-
sures the vulnerability of an application to security attacks. This way we will
automate the exploit mechanism and perform a larger number of tests.

References

[1] Acunetix, http://www.acunetix.com/
[2] J. Atwood, Coding horror, Protecting Your Cookies: HttpOnly, August 28, 2008
[3] Barracuda Networks, http://www.barracudanetworks.com/ns/products/web-site-

firewall-overview.php
[4] BaydenSystems, http://www.bayden.com/tamperie/
[5] M. Brooks, Bypassing Internet Explorer’s XSS Filter, Traps Of Gold-Defcon 2011,

https://sitewat.ch/files/Bypassing%20Internet%20Explorer’s%20XSS%20Filter.pdf
[6] CERT - Measuring Software Security Assurance -

www.cert.org/research/2010research-report.pdf
[7] Cisco - ACE Web App Firewall http://www.cisco.com/en/US/products/ps9586/index.html
[8] Citrix NetScaler App Firewall

http://www.citrix.com/English/ps2/products/product.asp?contentID=2312027
[9] G.A. Di Lucca , A.R. Fasolino, M. Mastoianni, P. Tramontana, Identifying cross site

scripting vulnerabilities in Web applications, Proc. WSE 2004, pg. 71-80
[10] J. Grossman, S. Fogie, R. Hansen, XSS Attacks: Cross-site Scripting Exploits and

Defense, Syngress, 2007

54 ADRIANA NEAGOŞ AND SIMONA MOTOGNA

[11] M. Howard, D. LeBlanc, Writing Secure Code, Microsoft Press, 2003
[12] HP WebInspect, https://download.hpsmartupdate.com/webinspect/
[13] IBM Software, Reduce your cost of quality, http://www-

01.ibm.com/software/rational/smb/quality/
[14] A. Klein, DOM Based Cross Site Scripting or XSS of the Third

Kind. Web Application Security Consortium Articles, 4, 2005,
http://www.webappsec.org/projects/articles/071105.shtml

[15] D. Lynch, XSS is fun!, October 20, 2011 http://davidlynch.org/blog/2011/10/xss-is-
fun/

[16] Mavituna Security, http://www.mavitunasecurity.com/netsparker/
[17] P. Mell, K. Scarfone, S. Romanosky - A Complete Guide to the Common Vulnerability

Scoring System Version 2.0, 2007, http://www.first.org/cvss/cvss-guide.pdf
[18] Microsoft - http://technet.microsoft.com/en-us/security/bulletin/MS10-002
[19] Mozilla Foundation Security Advisory,

http://www.mozilla.org/security/announce/2012/mfsa2012-13.html
[20] MSDN - Security, Anti-Cross Site Scripting Library, http://msdn.microsoft.com/en-

us/security/aa973814
[21] NASA - Open Source Summit 2011, http://www.nasa.gov/open/source/
[22] Open Web Application Security Project www.owasp.org
[23] Opera Support, http://www.opera.com/support/kb/view/973/
[24] PortSwingger Web Security, http://portswigger.net/burp/
[25] Social Hacking, Recent Facebook XSS Atacks Show Incresing Sophistication, April 21,

2011
[26] G. Wassermann, Static detection of cross-site scripting vulnerabilities, Proc. of ICSE

2008, pg.171-180

Babeş Bolyai University, Department of Computer Science, M. Kogălniceanu
1, 400084 Cluj-Napoca, Romania

E-mail address: naie1000@scs.ubbcluj.ro, motogna@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LVII, Number 4, 2012

PHONEMES VERSUS GEOMETRIC PROPERTIES IN

CLUSTERING OF POEMS

MIHAIELA LUPEA AND DOINA TĂTAR

Abstract. This paper discusses the comparison between two kinds of fea-
tures in clustering of some literary poems by the same author, the Roma-
nian poet, Mihai Eminescu. Using Precision, Recall, Rand Index, Relative
Precision and Purity measures we conclude that the topics of poems are
better characterized by the phonemes as features than by geometric prop-
erties (described by six indicators: V/N ;A; Λ;V ar(Λ), Gini;V ar(Gini))
of the rank-frequency sequence of word forms.

1. Introduction

This paper discusses the comparison between two kinds of features in clus-
tering of some literary poems by the same author, the Romanian poet Mihai
Eminescu. The Gold Standard (GS) of evaluation is a manual one, which
divides the set of the longest 45 Eminescu’s poems (see Appendix A for cor-
respondence numbers - titles) into five big clusters, topic (content) focused:

• Love-general stories (tales): {10; 48; 51; 62; 64; 87; 93; 104; 109; 110;
117; 120; 129};
• Love-personal stories: {8; 9; 13; 21; 38; 57; 68; 69; 94; 100; 143};
• Philosophy-tales wisdom: {25; 34; 52; 58; 61; 70; 90; 106; 126; 127;
130};
• Nature: {28; 91};
• History-patriotism: {6; 47; 49; 50; 74; 95; 123; 128}.

For clustering the poems, these are represented using the space vector method
and the Algorithm of Agglomerative Hierarchical Clustering ([2, 4]). The
complete-link similarity between two clusters and the cosine similarity measure
between two vectors are applied.

Received by the editors: 20.11.2012.
2010 Mathematics Subject Classification. 68T50.
1998 CR Categories and Descriptors. I.2.7 [Artificial Intelligence]: Natural Language

Processing – Text analysis.
Key words and phrases. clustering, Rand Index, purity, phonemes.

55

56 MIHAIELA LUPEA AND DOINA TĂTAR

same cluster Meth different cluster Meth

same cluster GS A C
different cluster GS B D

PMeth = A
A+B A+B =

∑K
i=1C

2
|wi| D = C2

|M | − (A+B + C)

RMeth = A
A+C A+ C =

∑K
i=1C

2
|wGS

i |

Table 1. Precision and Recall measures

For the first clustering we considered as features the phonemes, building
phonemes vectors corresponding to the phonetic transcription of the poems.
Such a vector for a poem has 31 components containing the relative frequencies
of the Romanian phonemes in that poem, as it is presented in Section 3.

The features used in the second clustering are geometric properties of
the rank-frequency sequence of word forms in poems, expressed by vectors
containing six indicators: V/N ; A; Λ ; Var(Λ); Gini; Var(Gini)), introduced
in [1] and described in Section 3.

The first method of evaluation of the clusterings is by establishing clas-
sical Precision and Recall measures, as reported to the Gold Standard (GS)
clustering. The second method is Rand Index ([2]) and a Relative Precision
as inspired from Rand Index algorithm (Section 2.2). The third method is the
calculus of Purity ([2, 3]), Section 2.3.

In all these cases (excepting Rand Index) the conclusion is that the best
indicators are the phonemes. The reason for these results seems to be the
fact the most indicators (introduced in [1]) are based on words, and the words
consists of phonemes. So, the phonemes unify and refine the words function.
However, in this paper we worked with only a part of the indicators introduced
in [1].

2. Evaluation of clustering

2.1. Precision and Recall. Let M be a set of elements. Two clustering
methods are applied to M obtaining the same number K of clusters:

• an arbitrary method Meth, providing the clusters: w1, . . . , wK ;
• a manual method, providing the gold standard GS clustering:
wGS
1 , . . . , wGS

K .

For a comparison of these two clusterings Table 1 is built. In the table we
use C2

T to denote the binomial coefficient indexed by T and 2.

PHONEMES VERSUS GEOMETRIC PROPERTIES IN CLUSTERING OF POEMS 57

same cluster Meth different cluster Meth

same cluster GS A C
different cluster GS B D

RI = A+D
A+B+C+D A+B =

∑K
i=1C

2
|wi| D = C2

|M | − (A+B + C)

A+ C =
∑J

j=1C
2
|Cj |

Table 2. Rand Index measure

The value of A represents the number of pairs of elements from M with the
property: if a pair belongs to the same cluster obtained with Meth, it belongs
also to the same cluster of GS.

The significance and the values of B, C, D are defined in an analogous
way, deductible from the positions in Table 1. A+B represents the number of
pairs of elements situated in the same cluster obtained using Meth, and A+C
represents the number of pairs of elements situated in the same cluster of GS.

Precision: PMeth = A
A+B counts how many of the determined cases by

Meth are correct.
Recall: RMeth = A

A+C counts how many of the correct cases are deter-
mined by Meth.

2.2. Rand Index. The set M is partitioned by some objective observations
in J classes: C1, . . . , CJ . An arbitrary clustering method Meth is applied to
M obtaining K clusters: w1, . . . , wK .

The measure Rand Index (RI) penalizes both the False positive pairs
(B) and the False negative pairs (C) according to Table 2.

Using Rand Index measure, we could obtain a method of a direct compar-
ison of two clusterings R1 and R2 with the same number of clusters.

Rand Index of clustering R1 relative to R2, denoted by RIR1,R2 expresses
how good the clustering R2 is, when a cluster (of R2) is considered a class: a
cluster is calculated by a more or less good method, a class is judged by some
objective reasons, thus a partition in classes is more exact than a partition in
clusters. A similar significance hasRIR2,R1, expressing the quality of clustering
R1.

RIR1,R2 ≤ RIR2,R1 means a better quality of the clustering R1 than of
the clustering R2 (with RI measure), when the same similarity measures of
clustering are used in R1 and R2.

The method could be applied also for the case of Precision, namely, Rel-
ative Precisions: PR1,R2 and PR2,R1 could be calculated. PR1,R2 ≤ PR2,R1

means a better quality of the clustering R1 than that of the clustering R2.

58 MIHAIELA LUPEA AND DOINA TĂTAR

2.3. Purity. Let us suppose that we have K clusters: w1, . . . , wK and J
classes: C1, . . . , CJ for a set M of elements. The purity of a cluster wk is
calculated as:

Purity(wk) = maxj{nkj}/|wk|
where nkj = |wk ∩ Cj |.

The index j∗k = argmaxj nkj determines the majority class of the cluster
wk denoted by Cj∗k

.

The Purity(wk) is the number of elements provided by the majority class
of the cluster wk over the cardinal of the cluster. The higher the contribution
of the majority class, the higher the purity of a cluster.

The Purity of a clustering is the weighted sum of the purities of all clusters:

Purity =

K∑
k=1

Purity(wk)× weight(wk)

where weight(wk) = |wk|/|M |.

3. A case study - clustering of Eminescu’s poems

In this section we apply the theory from the previous section using as M
the set of the 45 longest poems of Eminescu (Appendix A). The poems are
represented using the vector space method, where the vectors are:

(1) numeric vectors of 31 components containing the relative frequencies
of the Romanian phonemes in the poem, describing the content of
the poem in a phonetic manner. The phonemes correspond to the
vowels (in number of 7), consonants (in number of 18) and 6 groups
of letters(’ce’, ’ci’, ’ge’, ’gi’, ’ch’, ’gh’). The letter ’x’ is decomposed in
two phonemes [c]+[s].

For example, the statistics for the poem Memento mori (90) are:
• total phonemes number: 46433;
• vowels number: 21494;
• consonants number: 24939 (including the groups of letters);
• the vector of occurrences for all 31 phonemes(in this order: vowels,
consonants, the groups of letters) is:
(3995, 5035, 4593, 1852, 3024, 1767, 1228, 512, 1614, 1827, 501,
385, 39, 70, 2491, 1431, 3370, 1341, 4072, 1831, 681, 2433, 362,
563, 402, 428, 262, 95, 103, 117, 9).

For the phoneme ’a’, with 3995 occurences in the poem, its relative
frequency in the category of vowels is computed as: 3995/21494 =
0.1859.

PHONEMES VERSUS GEOMETRIC PROPERTIES IN CLUSTERING OF POEMS 59

The relative frequency in the category of consonants for the phoneme
’b’, with 512 occurences in the poem is computed as: 512/24939 =
0.0205.

The vector of phonemes for Memento mori is:
(0.1859, 0.2343, 0.2137, 0.0862, 0.1407, 0.0822, 0.0571, 0.0205, 0.0647,
0.0733, 0.0201, 0.0154, 0.0016, 0.0028, 0.0999, 0.0574, 0.1351, 0.0538,
0.1633, 0.0734, 0.0273, 0.0976, 0.0145, 0.0226, 0.0161, 0.0172, 0.0105,
0.0038, 0.0041, 0.0047, 4.0E-4).

(2) numeric vectors of six components corresponding to some indicators:
V/N ; A; Λ ; Var(Λ); Gini; Var(Gini), which describe geometric prop-
erties of the rank-frequency sequence of word forms in poems ([1]).

The significance of the indicators is the following: V is the vocab-
ulary size (words) of the text, N is the text length (the total number
of words in the text), A (adjusted modulus) is an index of vocabulary
richness.

As regarding Λ indicator, this is introduced as a normalization of
L, the length of the arc beginning at f(1) and ending at f(V), Λ
=L/N ∗(Log(N))). Gini’s coefficient is connected with the cumulative
relative frequencies which form an arc running from (0,0) and touching
the bisector in (1,1). The magnitude of the area between the bisector
and this arc yields Gini’s coefficient. The expressions for Var(Λ) and
Var(Gini) are also introduced first time in ([1]).

For example, the vector for the poem Memento mori (90) is:
(0.365906068, 0.9311, 1.6175, 0.000068, 0.5717, 0.000033).

To obtain five clusters (like inGold Standard) of Eminescu’s poems we used
the Algorithm of Agglomerative Hierarchical Clustering ([2, 4]) (or bottom-up
clustering algorithm), the complete-link similarity between two clusters and
the cosine similarity measure between two vectors.

In the bottom-up clustering algorithm we begin with a separate cluster
for each poem and we continue by grouping the most similar clusters until we
obtain a specific number of clusters (here five clusters).

For the cosine similarity measure between the vectors V1 = (a1, a2, ..., an)
and V2 = (b1, b2, ..., bn) the well known formula is used:

sim(V1, V2) = cos(V1, V2) =
∑i=n

i=1 ai∗bi√∑i=n
i=1 a2i×

√∑i=n
i=1 b2i

The complete-link similarity between two clusters C1 and C2 represents
the similarity of two least similar members of the two clusters:

60 MIHAIELA LUPEA AND DOINA TĂTAR

Precision Recall Rand Index Relative Precision
PR1 = 0.2997 RR1 = 0.5622 RIR1 = 0.6161 PR1,R2 = 0.2088
PR2 = 0.2392 RR2 = 0.2811 RIR2 = 0.6383 PR2,R1 = 0.3231

Table 3. Measures for R1 and R2 clusterings

sim(C1, C2) = min{sim(Vi, Vj)|Vi ∈ C1 and Vj ∈ C2}.

The clustering R1 corresponds to the representation (1):

• wR1
1 :{8(2); 9(2); 21(2); 38(2); 57(2); 68(2); 69(2); 70(3); 94(2); 123(5)};

• wR1
2 :{6(5); 10(1); 13(2); 25(3); 34(3); 47(5); 48(1); 49(5); 50(5); 51(1);

52(3); 61(1); 62(1); 64(1); 74(5); 87(1); 90(3); 95(5); 109(1); 110(1);
117(1);126(3); 127(3); 128(5); 129(3); 130(2); 143(2)};
• wR1

3 :{28(4); 91(4); 93(1); 104(1); 120(1)};
• wR1

4 :{58(3); 100(2)};
• wR1

5 :{106(3)}.

The clustering R2 corresponds to the representation (2):

• wR2
1 : {52(3); 90(3)};

• wR2
2 : {6(5); 10(1); 87(1); 95(5); 109(1); 128(5); 130(3)};

• wR2
3 : {34(3); 58(3); 61(3); 91(4); 126(3); 129(1)};

• wR2
4 : {9(2); 13(2); 21(2); 25(3); 28(4); 48(1); 49(5); 50(5); 62(1); 64(1);

69(2); 93(1); 94(2); 104(1); 106(3); 110(1); 117(1); 127(3); 143(2)};
• wR2

5 :{8(2); 38(2); 47(5); 51(1); 57(2); 68(2); 70(3); 74(5); 100(2);
120(1); 123(5)}.

The numbers in brackets represent the manual assignation for the poems
of one of the five clusters corresponding to Gold Standard clustering (see In-
troduction).

R1 and R2 are compared applying the measures of Precision, Recall, Rand
Index, Relative Precision, and Purity and the results are reported in Table 3.

For computing the purities of R1 and R2 we consider that GS clustering
represents the set of predefined classes. Table 4 contains the values of purities
for all clusters of R1 and R2, and also the overall purities for these clusterings.

The overall Purity for R1, PurityR1 = 0.8×0.22+0.37×0.6+0.6×0.11+
0.5× 0.04 + 1× 0.02 = 0.504.

PHONEMES VERSUS GEOMETRIC PROPERTIES IN CLUSTERING OF POEMS 61

clusters of R1 wR1
1 wR1

2 wR1
3 wR1

4 wR1
5

Purity 0.8 0.37 0.6 0.5 1 PurityR1 = 0.504

clusters of R2 wR2
1 wR2

2 wR2
3 wR2

4 wR2
5

Purity 1 0.42 0.66 0.36 0.45 PurityR2 = 0.438

Table 4. Purity measure for R1 and R2 clusterings

The overall Purity for R2, PurityR2 = 1×0.04+0.42×0.15+0.66×0.13+
0.36× 0.42 + 0.45× 0.24 = 0.438.

From Table 3 and Table 4 we can conclude:

(1) Both Precision and Recall are better in the case of R1 clustering than
in the case of R2 clustering: PR1 ≥ PR2 and RR1 ≥ RR2.

(2) According to Rand Index measure the results are better for R2 than
for R1 : RIR1 ≤ RIR2.

(3) In a direct comparison of R1 and R2 clusterings using Relative Preci-
sion, the quality of R1 is better than that of R2 : PR1,R2 ≤ PR2,R1.

(4) As PurityR1 ≥ PurityR2, we can say again that the clustering R1 is
of a better quality than R2.

4. Conclusions

In this paper Precision, Recall, Rand Index, Relative Precision and Purity
evaluation measures are used to compare the impact of different features of
poems in the topic-focused clustering of the 45 longest Eminescu’s poems.
Excepting Rand Index, all the other measures suggest that the phonemes as
features characterize better the topic (content) of the poems than geometric
properties (described by the indicators: V/N ;A; Λ;V ar(Λ), Gini;V ar(Gini))
of the rank-frequency sequence of word forms.

References

[1] Popescu, I.I., Čech, R., Altmann, G.: ”The Lambda-structure of Texts”’. Studies in
quantitative linguistics 10, RAM-Verlag, 2011.

[2] Manning, C., Raghavan, P., Schutze, H.: ”Introduction to Information Retrieval”,
Cambridge University Press, 2008.

[3] Mihalcea, R., Radev, D.: ”Graph-based Natural language Processing and Infromation
Retrieval”, Cambridge University Press, 2011.

[4] Tatar, D., Serban, G.: ”Word clustering in QA systems”, Studia Universitatis Babes-
Bolyai, Seria Informatica 2003, 1, pp. 23–33.

62 MIHAIELA LUPEA AND DOINA TĂTAR

Appendix A. The correspondence between numbers and titles of
poems

No. Poem No. Poem
(6) Andrei Mureşanu (8) Aveam o muză
(9) Basmul ce i l-aş. . . (10) Călin

(13) Când crivăţul cu iarna... (21) Copii eram noi amândoi
(25) Cugetările sărmanului. . . (28) Dacă treci râul Selenei
(34) Demonism (38) Despărţire
(47) Dumnezeu şi om (48) Eco
(49) Egipetul (50) Epigonii
(51) Făt-Frumos din tei (52) Feciorul de impărat fără. . .
(57) Ghazel (58) Glossa
(61) Impărat şi proletar (62) In căutarea Şeherezadei
(64) Inger şi demon (68) Iubită dulce, o, mă lasă
(69) Iubitei (70) Junii corupti
(74) La moartea lui Heliade (87) Luceafărul
(90) Memento mori (91) Miradoniz
(93) Mitologicale (94) Mortua est!
(95) Mureşanu (100) Nu mă-nţelegi
(104) O călărire ı̂n zori (106) O, adevăr sublime...
(109) Odin şi poetul (110) Ondina (Fantazie)
(117) Povestea teiului (120) Pustnicul
(123) Rugăciunea unui dac (126) Scrisoarea I
(127) Scrisoarea II (128) Scrisoarea III
(129) Scrisoarea IV (130) Scrisoarea V
(143) Venere şi Madonă

Babeş-Bolyai University, Department of Computer Science, M. Kogălniceanu
St., 400084 Cluj-Napoca, Romania

E-mail address: lupea,dtatar@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LVII, Number 4, 2012

A STUDY ON USING REINFORCEMENT LEARNING FOR

TEMPORAL ORDERING OF BIOLOGICAL SAMPLES

IULIANA M. BOCICOR

Abstract. The temporal ordering of biological samples, with the goal of
retrieving the temporal evolution of dynamic biological processes, is an im-
portant problem within bioinformatics. As the general temporal ordering
problem has been proven to be NP-complete, various approximation and
heuristic methods are developed to approach it. Reinforcement Learning
is an approach to machine intelligence in which an adaptive system can
learn to behave in a certain way by receiving punishments or rewards for
its chosen actions. This paper aims to investigate a reinforcement learning
based approach to the temporal ordering problem and several variations to
this approach, based on Q-Learning. The algorithms are experimentally
evaluated on a time series gene expression data set and we provide analysis
and comparisons of the obtained results.

1. Introduction

Reinforcement Learning [12] is an approach to machine intelligence in
which an agent [11] can learn to behave in a certain way by receiving punish-
ments or rewards for its chosen actions. The learner is not told which actions
to take, as in most forms of machine learning, but instead must discover which
actions yield the highest reward by trying them. The reinforcement learning
algorithms selectively retain the outputs that maximize the received reward
over time.

The biological temporal ordering (TO) problem is formulated as the prob-
lem of constructing a sorted collection of multi-dimensional biological data,
collection that reflects an accurate temporal evolution of a certain biologi-
cal process. The final goal is to find certain patterns in the input data that

Received by the editors: December 1, 2012.
2010 Mathematics Subject Classification. 68P15, 68T05.
1998 CR Categories and Descriptors. I.2.6[Computing Methodologies]: Artificial In-

telligence – Learning ; I.2.8[Computing Methodologies]: Problem Solving, Control Meth-
ods, and Search – Heuristic methods.

Key words and phrases. Bioinformatics, Temporal Ordering, Reinforcement Learning, Q-
Learning.

63

64 IULIANA M. BOCICOR

vary over time and use them efficiently in order to be able to offer a proper
characterization of the process in question.

In this paper we aim to investigate several variations to a reinforcement
learning based approach for the TO problem, approach that we have previously
introduced in [3]. The evaluations are made on a data set that was used in [3]
and comparisons and analysis will be provided.

The rest of the paper is organized as follows. Section 2 introduces the
biological TO problem, as well as an existing reinforcement learning based
approach. A series of variations to this approach, more specifically to the
underlying algorithm are presented in Section 3. Experimental evaluations,
analysis and comparisons of the all the algorithms are given in Section 4.
Section 5 outlines our conclusions and further work.

2. Background

In this section we will briefly present the TO problem, in a bioinformatics
framework, then review some fundamental aspects related to the reinforcement
learning based approach that we previously introduced for solving this problem
[3].

2.1. The Temporal Ordering Problem. The general temporal ordering
problem has been tackled within multiple fields. In machine learning it is
considered as important as the classification problem, given that, in certain
cases, ordering a set of instances can provide more significant information
than classifying them. The TO problem has been proven to be NP-complete
[2], therefore various approximation and heuristic methods could be used to
approach it.

Within the bioinformatics and computational biology framework, the TO
problem refers to constructing a sorted collection of multi-dimensional biolog-
ical data, collection that reflects an accurate temporal evolution of a certain
biological process. A large part of the existing data is static, but biological
processes are mostly dynamic. In order to be able to analyze and characterize
these processes, scientists need dynamic information and one way to obtain
this from static data is by inferring temporal orderings to this data. The TO
problem is important within bioinformatics, as there are many practical appli-
cations for it, one of the most significant being in the field of cancer research,
as cancer is inherently a dynamic disease.

2.2. Reinforcement Learning based approach for the TO problem.
Reinforcement Learning (RL) [7] is an approach to machine intelligence that
combines two disciplines to solve successfully problems that neither discipline
can address individually: Dynamic programming and Supervised learning. RL

BIOLOGICAL TEMPORAL ORDERING USING REINFORCEMENT LEARNING 65

is a synonym of learning by interaction [9]. During learning, the adaptive
system tries some actions (i.e., output values) on its environment, then it
is reinforced by receiving a scalar evaluation (the reward) of its actions. The
reinforcement learning algorithms selectively retain the outputs that maximize
the received reward over time. In RL, the computer is simply given a goal to
achieve and it learns how to achieve that goal by trial-and-error interactions
with its environment.

In [3] we introduced a reinforcement learning based technique for identi-
fying a temporal ordering of a series of multi-dimensional biological samples.
Even though in the above mentioned work we refer strictly to gene expression
data obtained from microarray experiments, the applicability of our method
is more general and it can be used with different types of multi-dimensional
biological data.

From a computational point of view, the TO problem was defined as the
problem of generating a permutation that maximizes the overall similarity of
the sequence of samples considered in the ordering [3]. The RL task associ-
ated to the TO problem consists in training the agent to find a path from
the initial to a final state having the maximum associated overall similarity.
During the training step of the learning process the learning agent determines
its optimal policy in the environment, i.e. the mapping from states to ac-
tions that maximizes the sum of the received rewards. The equivalent action
configuration is viewed as a permutation that gives the temporal ordering for
the input samples. For training the TO agent [3] a Q-learning approach was
used [12] and a new action selection mechanism was defined in order to guide
the exploration of the search space [3]. After the training step of the agent
has been completed, the solution learned by the agent, which indicates the
recovered temporal ordering, is constructed starting from the initial state and
following the Greedy mechanism. For more details about how the data was
pre-processed, about the definitions of the state and action spaces, reward
and transition functions or about the action selection mechanism, we refer the
reader to [3].

3. Variations of the RL based approach

This section aims to present several variations we propose for the RL based
approach introduced in [3], used to solve the biological TO problem. In [3] we
introduced an action selection mechanism based on the ε-Greedy mechanism
[12], which uses a look-ahead procedure, in order to better guide the learning
agent through the search space. To investigate how the policy specifying the
way in which a new action is chosen in each given state influences the accuracy
of the recovered ordering, we firstly try a different action selection policy: the

66 IULIANA M. BOCICOR

softmax policy. A second idea refers to using a different RL approach, one that
combines Q-learning with an essential mechanism of RL: eligibility traces.

3.1. The Softmax Action Selection Policy. One key aspect of reinforce-
ment learning is a trade-off between exploitation and exploration [13]. To
accumulate a lot of reward the learning system must prefer the best experi-
enced actions, however, it has to try (to experience) new actions in order to
discover better action selection mechanisms for the future.

Several rules (policies) for choosing actions in order to make transitions
among states during the learning process exist in the literature. The greedy
policy implies that the learning agent chooses the highest-valued action in
each state. An agent using this mechanism only exploits current knowledge to
maximize its reward, but does not explore new states that could lead to higher
long term rewards. A more effective method, which balances the exploration
of new states with exploitation of current knowledge, is ε-Greedy [12]. It
selects the greedy action with probability 1 − ε and, in order to explore the
environment, with probability ε it chooses an action at random, uniformly,
not taking into consideration the action value estimates. Therefore, the main
drawback of ε-Greedy is that the worst action is as likely to be chosen as the
second best one.

A way to counter this disadvantage is to use a policy that chooses better
actions more often. This is achieved by the softmax action selection policy [12],
in which actions are ranked according to their value estimates and each action
is chosen with a probability computed using its value. The greedy action will
still have the highest probability. The most common softmax method uses a
Gibbs, or Boltzmann distribution, where the probability of choosing action a
in state s is (for a Q-learning approach):

(1)
eQ(s,a)/τ∑
a e

Q(s,a)/τ

where τ is a positive parameter called temperature, which specifies how random
actions should be chosen. For high values of the temperature all actions will
be almost equiprobable. As the temperature is reduced, the actions that have
higher value estimates are more likely to be selected and in the limit, as τ → 0,
the best action is always chosen, this meaning that the softmax policy becomes
the same as the greedy policy.

3.2. Q-learning with eligibility traces. Eligibility traces were firstly intro-
duced in [5] and they are a basic mechanism used in RL for handling delay
[10]. The idea is that each time a state is visited it is marked by a trace,
which then gradually decays over time, exponentially, according to a decay

BIOLOGICAL TEMPORAL ORDERING USING REINFORCEMENT LEARNING 67

parameter λ (0 ≤ λ ≤ 1) and to the discount rate parameter γ. The trace
makes the state eligible for learning [10].

There are two types of possible implementations for eligibility traces:

• Accumulating eligibility traces - the trace increases each time a state
is visited. States that are visited more recently and more often are
assigned more credit. For a Q-learning approach, the accumulating
trace is defined in the following way [10]:

(2) et+1(s, a) =

{
γλet(s, a) + 1, if s = st and a = at
γλet(s, a), otherwise

for all state-action pairs (s, a). Here et(s, a) represents the eligibility
trace of the state-action pair (s, a) at time t, st is the actual state and
at the actual selected action at time t.

• Replacing eligibility traces - each time a state is visited its trace is reset
to 1, disregarding the previous trace information. For a Q-learning
approach the replacing trace for a state-action pair is [10]:

(3) et+1(s, a) =

 1, if s = st and a = at
0, if s = st and a 6= at
γλet(s, a), otherwise

for all state-action pairs (s, a).

There are two approaches that combine Q-learning with eligibility traces:
Watkins’s Q(λ) [14] and Peng’s Q(λ) [8]. As in this study we use only the
former, we will briefly describe it in the following. In Q-learning the agent
learns about the greedy policy, but usually, during training, it follows an
exploratory policy (e.g. ε-greedy). Therefore, in learning about the greedy
policy, the eligibility trace information can be used only as long as the greedy
policy is followed. This means that eligibility traces are updated using Formula
2 or 3 (depending on the case) for the greedy actions, but the moment an
exploratory action is taken the eligibility trace for the respective state-action
pair is set to 0. The algorithm is given in Figure 1. We denote in the following
by Q(s, a) and e(s, a) the Q-value estimate, respectively the eligibility trace
value associated to the state s and action a, by α the learning rate, by γ the
discount factor and by λ the decay parameter.

Repeat (for each episode)
Select the initial state s of the agent (as s1).
Choose action a from s using the given action selection mechanism.
Repeat (for each step of the episode)

68 IULIANA M. BOCICOR

Take action a, observe the reward r(s, a) and the next state s′.
Choose action a′ from s′ using the given action selection mechanism.
a∗ ← argmaxbQ(s′, b)
δ ← r(s, a) + γ ·Q(s′, a∗)−Q(s, a)
Update e(s, a) //e(s, a)← e(s, a) + 1 or e(s, a)← 1
For all s,a:
Q(s, a)← Q(s, a) + α · δ · e(s, a)
If a′ = a∗

e(s, a)← γ · λ · e(s, a)
else
e(s, a)← 0

s ← s’
until s is terminal

Until the maximum number of episodes is reached or the Q-values do not change

Figure 1. Watkins’s Q(λ) algorithm [14].

Another possible implementation of Q(λ), called naive Q(λ) [12], would
be the same as Watkins’s algorithm, except that for an exploratory action the
eligibility traces are not set to 0.

4. Experiments

In this section we provide experimental evaluations of the algorithms de-
scribed in Section 3. Several tests were made, for each Q-learning algorithm
(traditional Q-learning, Q(λ) and naive Q(λ)), using each type of eligibility
trace (accumulating and replacing) and two different action selection policies
(one step look-ahead procedure [3] and softmax action selection policy).

For the experiments we used a software framework that we have previously
introduced for solving combinatorial optimization problems using reinforce-
ment learning techniques [4].

4.1. Case study. The data set we used to test the performance of the differ-
ent Q-learning based algorithms is a time series composed of gene expression
data measuring the levels of expression of almost every yeast gene, at eight
different time points, as yeast cells were affected by a given type of environ-
mental change: dithiothrietol (DTT) exposure [6]. A time series is a collection
of data resulted from a specific type of biological experiment: samples of tis-
sues are extracted from the same individual at different and known moments
in time, during the progression of the biological process. Thus, for a time

BIOLOGICAL TEMPORAL ORDERING USING REINFORCEMENT LEARNING 69

series data set, the exact time of each sample is provided and the ordering is
known. This data set was also used in [3] along with several different time se-
ries experiments for yeast or human cells and cancer gene expression data. As
described in [3], in order to reduce the dimensionality of the input data (which
is, usually, huge in the case of microarray experiments), we firstly pre-process
the data by applying a statistical analysis, the final goal being the selection
of those features (genes) that are most important for an accurate temporal
ordering.

The algorithms are compared by examining the accuracy of the recovered
orderings, by the number of epochs they need to achieve convergence and by
the computational time. In [3] we introduced an evaluation measure, called
Samples Misplacement Degree (SMD), which, in our view, asseses the quality
of a solution (ordering). We mention that smaller values for the SMD (smaller
numbers of misplaced samples) indicate better orderings, the correct ordering
having SMD = 0. Regarding the parameter setting, we remark that for all
types of tests we used the following values: the discount factor for the future
rewards is γ = 0.95; the learning rate is α = 0.8; the number of training
episodes is 7 · 105; for the tests using eligibility traces the decay parameter is
λ = 0.95. For each of the two action selection policies, tests were made for
different values of policy parameter (ε - in the case of the one step look-ahead
procedure and τ - in the case of softmax): {0.1, 0.2, 0.5, 0.8, 0.9}. We mention
that the experiments were carried out on a PC with an Intel Core i5-2400
Processor at 3.1 GHz (4 CPUs) with 8 GB of RAM.

4.2. Comparative results. In the following, we present the results obtained
by each type Q-learning algorithm.

The traditional Q-learning algorithm, with no eligibility traces, proves a
very good performance with both action selection policies. In the case of
the ε-Greedy based look-ahead procedure [3], the optimal solution (the correct
ordering 1, 2, 3, 4, 5, 6, 7, 8) is obtained within very short amounts of time -
less than 2 seconds, for all values of ε. During the first few epochs of the
training process the algorithm obtains various orderings, depending on the
value of the parameter ε, but it converges very soon to the optimal ordering,
in less than 3000 training epochs, on average. This is illustrated in the first
image of Figure 2, which depicts the overall similarity of the solutions obtained
during the training process. We mention that the overall similarity of 97.051
corresponds to the correct ordering.

The softmax action selection policy also leads to the correct ordering, for all
values of the temperature parameter, except for τ = 0.1. In this case, the algo-
rithm converges to a different ordering of the samples: S = 8, 1, 2, 3, 4, 5, 6, 7,
having SMD(S) = 3. Still, we observe that the algorithm succesfully recovers

70 IULIANA M. BOCICOR

Figure 2. Q-Learning: the learning process.

the order of a subset of 7 samples, out of the set of 8. Another observation
is that for the softmax policy the convergence is slower than with the other
used policy, but as the temperature parameter increases the number of epochs
needed to reach the solution decreases. This is illustrated in the second image
of the Figure 2: for τ = 0.2 the convergence is achieved after 170000 epochs,
while for τ = 0.9 only 20000 epochs are necessary. As for the computational
time, we remark that even for smaller values of τ the solution is retrieved in
less than 1 minute.

As soon as eligibility traces are introduced, the behaviour of the Q-learning
algorithm changes radically: for certain values of ε or τ it does not converge at

BIOLOGICAL TEMPORAL ORDERING USING REINFORCEMENT LEARNING 71

Figure 3. Q(λ): the learning process for ε = 0.8 and τ = 0.8.

all, while for other values it retrieves the correct ordering, but within greater
amounts of time.

Watkins’s Q(λ) [14] performs somewhat similarly for the two types of
eligibility traces. In this case, the softmax policy achieves better convergence
than the alternative. Q(λ) in conjunction with softmax has the following
behaviour: for τ = 0.1 the algorithm converges to different orderings than the
correct one, which have, however, values less than 4 of the SMD measure.
As the temperature increases over 0.8 the algorithm slowly converges to the
correct ordering, after 250000 training epochs. When used with the look-
ahead action selection procedure, for small values of ε, it does not achieve
convergence. But, for ε ≥ 0.8 it begins to converge to the correct solution
after 250000 episodes, equivalently 140 seconds. Still, in some rare cases,
there are individual epochs when it slightly deviates from the solution, but it
soon returns to the maximum overall similarity ordering. These are illustrated
in Figure 3, which shows the overall similarity of the solutions obtained during
the training process, for both action selection strategies (using ε = 0.8 and
τ = 0.8) and both types of traces. It can be observed that the algorithms using
the softmax policy (represented in 2 different shades of purple) completely
converge, while the ones using the look-ahead procedure (represented in light
and dark orange) slighlty deviate from the solution once in a while.

In what concerns the naive Q(λ), when run using accumulating eligibility
traces and the look-ahead policy it does not converge for lower values of ε, but
for ε ≥ 0.8 it soon converges to the correct solution, after 15000 episodes, in
less than 3 seconds. In this case, the softmax selection mechanism leads to

72 IULIANA M. BOCICOR

Accumulating traces Replacing traces
Look-ahead Softmax Look-ahead Softmax

Q(λ)
ε < 0.8⇒ div. τ = 0.1⇒ S′ ε < 0.8⇒ div. τ = 0.1⇒ S′

ε ≥ 0.8⇒ S τ ≥ 0.8⇒ S τ ≥ 0.8⇒ S ε ≥ 0.8⇒ S

(> 250000 epochs) (> 250000 epochs) (> 250000 epochs) (> 250000 epochs)

naive Q(λ)
ε < 0.8⇒ div. all values of all values of τ = 0.1⇒ S′

ε ≥ 0.8⇒ S τ ⇒ div. ε⇒ div. τ > 0.1⇒ div.

(> 250000 epochs)

Table 1. Results obtained by the Q(λ) and naive Q(λ) algorithms.

divergence for all values of the temperature parameter. For replacing traces,
the situation is different. The algorithm does not converge for any of the tested
values of ε, in the case of the intelligent look-ahead procedure and exhibits the
same behaviour when combined with the softmax policy. Exception is the
case when τ = 0.1, when naive Q(λ) converges to a different solution than the
correct one and the convergence is achieved within less than 40 seconds.

The obtained results for Q(λ) and naive Q(λ) are synthesized in Table 1.
Here S denotes the convergence to the correct ordering: S = 1, 2, 3, 4, 5, 6, 7, 8;
S′ denotes the convergence to a different ordering than the correct one and
the abbreviation “div.” is used to indicate divergence.

4.3. Discussion. We have experimented with three Q-learning based algo-
rithms and two types of action selection policies in order to obtain results
for the temporal ordering problem. The original model is a Q-learning al-
gorithm which uses an intelligent ε-Greedy based look-ahead action selection
mechanism [3]. The other two algorithms combine Q-learning with eligibility
traces [5]. As action selection policies, we used the look-ahead procedure we
introduced in [3], as well as the softmax selection policy [12].

The obtained results demonstrate that the traditional Q-learning algo-
rithm performs better, for the considered problem, than the two algorithms
that use Q-learning in conjunction with eligibility traces: Watkins’s Q(λ) [14]
and naive Q(λ) [12]. Both these algorithms are able to retrieve the correct so-
lution, for certain values of the considered action selection policy parameters,
but convergence is much slower than in the case of Q-learning without eligibil-
ity traces. A possible explanation for this behaviour would be the fact that in
our representation of the environment the full set of states is never completely
known and therefore eligibility traces can only be updated for a known subset
of states. This leads us to the conclusion that, for the TO problem, Q-learning
with no eligibility traces is more appropriate.

BIOLOGICAL TEMPORAL ORDERING USING REINFORCEMENT LEARNING 73

With regard to the action selection policies, we remark that in the case
of the Q-learning algorithm the intelligent action selection procedure [3] con-
verges faster than the softmax selection mechanism, as this procedure effi-
ciently guides the exploration of the search space. On the other hand, for the
look-ahead mechanism the training process during an episode has a time com-
plexity of θ(n2), while for the softmax policy this complexity is θ(n), where n
is the number of samples considered in the ordering process. We will further
investigate how an intelligent action selection mechanism, based on softmax
instead of ε-Greedy, could influence the outcome.

5. Conclusions and Further Work

In the present study we investigated several variations to a reinforcement
learning based approach for the biological temporal ordering problem, tackled
from a computational perspective. Three Q-learning based algorithms have
been experimentally evaluated and compared.

The algorithms were tested on a time series gene expression data set,
consisting of samples extracted from yeast cells affected by dithiothrietol ex-
posure, at eight different time points [6]. The tests showed that the traditional
Q-learning algorithm performs well with both considered action selection poli-
cies (intelligent look-ahead procedure [3] and softmax [12]), retrieving the cor-
rect ordering in less than 1 minute, for all tested values of the parameters,
except for one case. The two algorithms that combine Q-learning with eligi-
bility traces are also able to obtain the correct solution, but only for certain
parameter settings and after a high number of training epochs.

We plan to extend the evaluation of the Q-learning based algorithms for
the other data sets we used in [3], to further develop the analysis. We will
also investigate possible improvements of these models by adding various local
search mechanisms or combining the softmax policy with the intelligent action
selection procedure introduced in [3], by testing different values for the decay
parameter λ (in the case of Q(λ) and naive Q(λ)), by decreasing the action
selection parameters (ε and τ) during the training process or by extending the
model to a distributed RL approach.

ACKNOWLEDGEMENT

I thank my thesis advisor, Professor Gabriela Czibula for the guidance,
ideas and suggestions for this paper. This work was possible with the finan-
cial support of the Sectoral Operational Programme for Human Resources
Development 2007-2013, co-financed by the European Social Fund, under the
project number POSDRU/107/1.5/S/76841 with the title Modern Doctoral
Studies: Internationalization and Interdisciplinarity.

74 IULIANA M. BOCICOR

References

[1] Chapman D., Kaelbling L. P. Input generalization in delayed reinforcement learning: an
algorithm and performance comparisons, Proc. of the 12th International Joint Confer-
ence on Artificial Intelligence 2, Morgan Kaufmann Publishers Inc., 1991, pp. 726-731,
Sydney, New South Wales, Australia.

[2] Cohen W. W., Schapire R. E., Singer Y. Learning to order things, J Artif Intell Res 10,
1999, pp. 243-270.

[3] Czibula G., Bocicor M.I., Czibula I.G. Temporal Ordering of Cancer Microarray Data
through a Reinforcement Learning based Approach, Evolutionary Bioinformatics, 2012.
Submitted for review.

[4] Czibula I. G., Czibula G, Bocicor M. I., A Software Framework for Solving Combina-
torial Optimization Tasks, Studia Universitatis ”Babes-Bolyai”, Informatica, Proc. of
KEPT 2011, Special Issue LVI(3), Babes-Bolyai University, 2011, pp. 3-8.

[5] Klopf A.H. Brain function and adaptive systems. A heterostatic theory. Technical Report
AFCRL-72-0164, Air Force Cambridge Research Laboratories, Bedford, MA, 1972.

[6] Gasch A. P., Spellman P. T., Kao C. M., Carmel-Harel O., Eisen M. B., Storz G.,
Botstein D., Brown, P. O. Genomic Expression Programs in the Response of Yeast Cells
to Environmental Changes, Molecular Biology of the Cell 11(12), 2000, pp. 4241-4257.

[7] Lin L.J. Self-Improving Reactive Agents Based On Reinforcement Learning, Planning
and Teaching, Machine Learning 8, 1992, pp. 293-321.

[8] Peng J. Efficient Dynamic Programming-Based Learning for Control, PhD thesis, North-
eastern University, Boston, MA, 1993.

[9] Perez-Uribe A. Introduction to Reinforcement learning,
http://lslwww.epfl.ch/∼anperez/RL/RL.html, 1998.

[10] Singh S. P., Sutton R. S. Reinforcement Learning with Replacing Eligibility Traces,
Machine Learning 22, 1996, pp. 123-158.

[11] Susnea I., Vasiliu G., Filipescu A., Radaschin A. Virtual Pheromones for Real-Time
Control of Autonomous Mobile Robots, Studies in Informatics and Control 18(3), 2009,
pp. 233–240.

[12] Sutton R.S., Barto A. G. Reinforcement Learning: An Introduction, MIT Press 1998.
[13] Thrun S. The Role of Exploration in Learning Control, Handbook for Intelligent Con-

trol: Neural, Fuzzy and Adaptive Approaches, Van Nostrand Reinhold, 1992, Florence,
Kentucky.

[14] Watkins, C. J. C. H. Learning from Delayed Rewards, PhD thesis, Cambridge University,
Cambridge, England, 1989.

Babeş-Bolyai University, Department of Computer Science, 1, M. Kogălniceanu
street, 400084 Cluj-Napoca, Romania

E-mail address: iuliana@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LVII, Number 4, 2012

REDUNDANT SPATIAL INDEX FOR SOLVING RANGE

QUERIES

LEON ŢÂMBULEA, ADRIAN SERGIU DĂRĂBANT,
AND ANDREEA NAVROSCHI-SZASZ

Abstract. Lately, new applications arise that manage large collections
of location and points of interest objects. These are frequently accessed
nowadays in mobile and web applications. In order to be able to query
and update the position of these objects, several index structures are used.
Each of these structures has its own advantages in solving a certain con-
crete problem. The term POI (Point of Interest) is employed in the context
of use of mobile devices. A characteristic of POI collections of objects is
their relatively static character (these objects do not usually change their
location). In the index structures recommended for these collections a POI
object is stored a single time. In this paper we suggest the alteration of an
existing index structure by memorizing several times the addresses of some
POI objects. The purpose of this multiple storage consists in reducing the
response time for range queries.

Key-Words: Grid, R-tree, query POI objects, index redundancy

1. Introduction

A POI (Point of Interest) is a position or a complex 3D structure with some
information associated with it (ID, civil address, category, name, description,
etc.) [8].

The term of position (location) refers to a physical point on the Earth
surface (specified within a system of coordinates). Some categories of POI
objects are static (shopping center, speed camera, petrol station), but there
are also POI objects valid only for a certain period of time (for example, a
cultural event scheduled for a certain time interval).

Lately there are many applications that use spatial data queries, particu-
larly POI objects collections. These applications start from a specified position

Received by the editors: November 28, 2012.
2000 Mathematics Subject Classification. 03G10.
1998 CR Categories and Descriptors. H.2.2 [Database Management]: Physical De-

sign – Access methods; H.2.8 [Database Management]: Database applications – Spatial
databases and GIS ; H.2.4 [Database Management]: Systems – query processing .

75

76 LEON ŢÂMBULEA, ADRIAN S. DĂRĂBANT, AND ANDREEA NAVROSCHI-SZASZ

or a position determined by a GPS device and they look for POI objects lo-
cated near this position, with possible additional restrictions, returning the
position and the associated information for the determined objects. For such
applications it is necessary that the responses to these queries are obtained
as quickly as possible. Large processing power and storage are generally not
enough in order to achieve acceptable response times and high accuracy on
this problem. One also needs specific types of indexes adapted to POI data
and POI query processing. Among the index structures mostly used for this
kind of queries we mention R-tree and the various versions of R-tree [2, 5, 9],
the grid structures [1, 6, 7], etc. In each of these structures, a reference to an
element from the POI objects collection is memorized a single time (there is
no redundancy in the index).

In this paper we analyze the possibility of memorizing several times certain
information (addresses of POI objects) in order to reduce the response time
for these queries.

The rest of this paper is organized in the following way: section 2 shortly
presents the R-tree and grid structures and the way to determine the re-
sponses to the queries, section 3 describes the suggested changes for the index
associated to a grid, in section 4 we emphasize the results obtained for some
experiments, and in section 5 we formulate some conclusions.

2. R-tree and Grid Structures

The POI objects collection is stored into a data base. Each object has an
idPOI, a position(x,y), and other associated information.

A range query reference is specified by two opposite points in a rectangle
D. With this type of query we ask for all POI objects located inside the
rectangle D.

To avoid the sequential access to all the objects of the data base, we build
an index. For each POI object in the index we memorize at least (idPOI and
(x, y)).

2.1. R-tree. The R-tree structure [2] was widely studied and used. An R-tree
is a balanced tree with two types of nodes:

• end nodes, where we store a sequence of values (idPOI, (x, y));
• internal nodes, where we store a sequence of values (idchild,MBR).
idchild is a pointer to an internal or end node, and MBR (minimum
bounding rectangle) is the smallest rectangle that includes all the ob-
jects that arise in the sub-trees of this node. There is no criterion for
the order of elements from an internal or end node.

As parameters of the index we have [4]:

REDUNDANT SPATIAL INDEX FOR SOLVING RANGE QUERIES 77

• the dimension of a node of the R-tree, from which we can deter-
mine the maximum number of inputs to the node: the number of
(idchild,MBR) pairs from an internal node, or the number of
(idPOI, (x, y)) values from an end node. Let M be the maximum
number of entries that will fit in one node.
• the minimum number of entries in one node (which is not the root
node) is given by a second parameter m ≤ M/2. This parameter
dictates the minimum occupation of a node.

An internal node is analyzed (the nodes referred by this one are covered)
if the associated MBR intersects the rectangle D. For a terminal node all
the (idPOI, (x, y)) values are examined and the objects for which (x, y) ∈ D
are included in the query answer. Depending on the query, it’s possible that
several branches of the tree need to be covered.

2.2. Grid. The domain where the POI objects are located is divided into a
regular network of square cells (resulting into a matrix of cells) (see Figure 1).
The objects located inside such a cell are attached to this one and are stored
into a list. For a more efficient browsing of the list, the objects can be stored
into a linked list of blocks (a block may contain a specified maximum number
of (idPOI, (x, y)) elements).

Figure 1. Grid index structure

The parameters of this index are [10]:

• The dimension used for dividing the domain of POI objects (the side
of a square cell from the grid);
• The dimension of a block.

78 LEON ŢÂMBULEA, ADRIAN S. DĂRĂBANT, AND ANDREEA NAVROSCHI-SZASZ

To determine the answer to a range query the following two steps need to
be taken:

(a) We determine the cells that are completely included inside the rectangle
D (all the elements from these cells are included in the answer);

(b) We determine the cells that are partially covered by the rectangle D. For
the objects of these cells we perform the test (x, y) ∈ D.

The POI objects are not uniformly spread in the plane, therefore some
cells will have many blocs (of objects) associated, and the search from step b)
can include a lot of data. In [3], the authors propose the use of a several levels
grid (the cells with many objects are organized as new grids).

Another possible index consists in storing the list of POI objects that
belong to a certain cell into a R-tree. Therefore the index structure is made
of a collection of R-trees and a matrix of references to these R-trees.

3. Redundant Index

Let d be the dimension of a cell from the grid built for the collection of
POI objects (according to section 2.2). We assume that the rectangle D from
the range query is a square and it corresponds to the following query: find all
POI objects located within a maximum distance d0 from a point (x0, y0). To
increase the efficiency of the search, we first find the POI objects located on
the coordinate axes (on each direction), within a maximum distance d0 from
point (x0, y0), therefore:

D(x0, y0; d0) = {(x, y) ∈ ℜ × ℜ| |x− x0| ≤ d0, |y − y0| ≤ d0}
Let s be the maximum possible value of d0. If s is large, then:

• the number of cells from the grid queried is large (according to section
2.2);
• the answer to the range query specified by D(x0, y0, d0) contains a
large number of recordings, situation that is detrimental for most ap-
plications that use such queries.

Next we suggest a possible alteration of the index structure if s < d/2, and
in the next section we prove that in some cases the response time for range
queries respecting the above conditions is reduced.

We build a ”main index” for the grid, as suggested in Section 2.2. For the
above hypothesis (s < d/2, d0 ≤ s), the answer to a range query is located in
one, two or four cells of the grid, as can be seen in Figure 2.

Let q be a range query, D(x0, y0, d0) the associated square and z(x0, y0)
the cell in the grid where point (x0, y0) appears. The answer to the query q is
found by browsing:

• the objects associated to the cell z(x0, y0). Let n(q) the number of
objects in this cell;

REDUNDANT SPATIAL INDEX FOR SOLVING RANGE QUERIES 79

Figure 2. Possible overlays of the range query answer over
the grid area

• the objects from the neighboring cells that intersect D. Let ns(q) be
the number of objects in these cells. If D is in the first case stated by
Figure 2, then ns(q) = 0.

We will denote by n1(q) the number of objects queried in order to find the
answer to q, so n1(q) = n(q) + ns(q).

An additional index - ”the secondary index” is added to the grid. It
contains, for a given cell z, references to objects in the neighboring cells (those
that share a side with z) and located within a minimum distance s from the
sides of the cell z. The areas containing the additional objects attached to a
cell are highlighted in Figure 3.

With this version of index, the answer to a query q specified byD(x0, y0, d0)
is found by:

• browsing the n(q) objects from the main index associated to the cell
z;
• browsing the objects in the secondary index associated to the cell z,
if D is in case 2 or 3 stated by Figure 2. Let nsi(q) be the number of
objects in the secondary index that need to be queried. If D ⊆ z, then
nsi(q) = 0.

We will denote by n2(q) the number of objects queried in order to find the
answer to q, therefore n2(q) = n(q) + nsi(q).

Let C be the collection of POI objects. For a certain d (the dimension of a
cell from the grid) and s (the maximum dimension for the d0 values from the

80 LEON ŢÂMBULEA, ADRIAN S. DĂRĂBANT, AND ANDREEA NAVROSCHI-SZASZ

Figure 3. Redundant objects attached to a grid cell in the
secondary index

range query) we can build the two index structures (the main and secondary
one) by a single traversal of collection C.

For an object ob = (id, (x, y)) ∈ C we determine:

(a) (i, j) = (
⌊
x
d

⌋
,
⌊y
d

⌋
) and the object is included in the main index of cell

(i, j);
(b) if x ∈ I1 = [i · d, i · d+ s) then left := i− 1 else left := null;

if x ∈ I2 = [(i+ 1) · d− s, (i+ 1) · d) then right := i + 1 else
right := null;
if y ∈ J1 = [j · d, j · d+ s) then bottom := j − 1 else bottom := null;
if y ∈ J2 = [(j + 1) · d− s, (j + 1) · d) then top := j + 1 else top := null;

(c) If at least one of the previous four conditions is satisfied then object ob is
included in the secondary index of cell (m,n). We denote by Si(ob;m,n)
the operation of inserting ob in the secondary index.

i f (l e f t != nu l l) and (top != nu l l) then Si (ob ; l e f t , top) ;

i f (top != nu l l) then Si (obj ; i , top) ;

i f (r i g h t != nu l l) and (top != nu l l) then Si (ob ; r i ght , top) ;

i f (r i g h t != nu l l) then Si (ob ; r i ght , j) ;

i f (r i g h t != nu l l) and (bottom!= nu l l) then Si (ob ; r i ght , bottom) ;

i f (bottom!= nu l l) then Si (ob ; i , bottom) ;

i f (l e f t != nu l l) and (bottom!= nu l l) then Si (ob ; l e f t , bottom) ;

i f (l e f t != nu l l) then Si (ob ; l e f t , j) ;

REDUNDANT SPATIAL INDEX FOR SOLVING RANGE QUERIES 81

Figure 4 illustrates the above presented cases. It can be seen that:

• each object is included in the main index for a single cell;
• objects from the subareas z2, z4, z6, z8 are contained in a single cell of
the secondary index;
• objects from subareas z1, z3, z5, z7 are contained in three cells of the
secondary index;

Figure 4. Objects included in the secondary index.

By redundantly storing references to some objects, the index size grows,
with the size of the secondary index. The induced redundancy coefficient can
be expressed by the following formula:

(1) c =
size(secondary index)

size(main index)

This coefficient depends on the d and s system parameters and on the
object distribution in the generated grid.

For a set of range queries Q we can determine if using the main and a
secondary index is more efficient than the main only index version. In order

82 LEON ŢÂMBULEA, ADRIAN S. DĂRĂBANT, AND ANDREEA NAVROSCHI-SZASZ

to achieve this we introduce the efficiency coefficient:

(2) e =

∑
q∈Q

n2(q)∑
q∈Q

n1(q)

For e < 1, the total number of accessed objects when applying the new
indexing schema for all queries in Q is smaller than in a classical grid structure
index.

4. Experimental results

In this section we present the experimental results obtained when varying
the values of the parameters introduced in the previous sections.

4.1. The Object Database Collection. In the conducted experiments we
used a real POI database collection provided by one of the major actors in
this field on the market. The main characteristics of this collection are:

• the number of POI objects is 1,195,398;
• the area covered by the database collection is
latitude ∈ [−54.8, 78.2], longitude ∈ [−179.8, 179.4].

For experiments we generated 100,000 range queries, each query being
expressed by a location and a range (x0, y0; d0). The (x0, y0) locations were
randomly generated on the area covered by the POI collection. For each given
s, the d0 parameter values were randomly generated in the interval [s÷ 4, s].

4.2. Measurements. For each d we compute the number of non-empty cells
in the grid. Table 1 shows the number of non-empty cells for a few values of
the d parameter.

d(km) 50 100 150 200 300
Cell Count 11,412 5,243 3,268 2,295 1,384
Table 1. Number of non-empty cells vs grid size.

For a given d and s (a subset of the experimental values) and for all queries
in Q Table 2 shows:

• Secondary Index Size - the size of the secondary index;
• c - the redundancy coefficient;
• N(q) =

∑
q∈Q

n(q);

REDUNDANT SPATIAL INDEX FOR SOLVING RANGE QUERIES 83

• Additionally inspected cells - the number of additional grid cells inter-
sected by all queries;
• Ns(Q) =

∑
q∈Q

ns(q);

• Nsi(Q) =
∑
q∈Q

nsi(q);

• the efficiency coefficient e = N(Q)+Nsi(Q)
N(Q)+Ns(Q) ;

From the Table 2 it can be seen that the efficiency coefficient has a value
less than 1 for many situations. In all these cases the number of analyzed
objects for a variant with a secondary index is smaller than the number of
analyzed objects for a main grid index without redundancy.

Also, the redundancy coefficient has in these cases reasonable values. This
means the overhead incurred for the multiple storage of the same objects would
not impact significantly the data structures stored in the main memory. By

d s Secondary c N(Q) Additionally NS(Q) NSI(Q) e
(km) Index inspected

Size cells
50 5 470,919 0.42 481,095 24,907 103,381 40,642 0.893
50 10 985,209 0.88 481,095 50,078 242,636 170,561 0.900
50 15 1,600,183 1.43 481,095 74,781 293,400 385,180 1.119
100 5 227,479 0.20 1,853,072 12,468 221,971 52,538 0.918
100 10 456,930 0.41 1,853,072 25,061 513,589 176,288 0.857
100 20 1,017,484 0.91 1,853,072 50,403 880,128 682,995 0.928
100 30 1,670,481 1.50 1,853,072 75,182 1,248,760 1,616,484 1.119
150 5 165,392 0.15 4,206,558 8,299 276,158 45,101 0.948
150 10 336,591 0.30 4,206,558 16,630 676,243 187,649 0.900
150 15 510,677 0.46 4,206,558 24,844 930,088 446,989 0.906
150 20 693,832 0.62 4,206,558 33,276 1,249,643 837,634 0.924
150 30 1,110,691 1.00 4,206,558 49,852 1,721,729 1,745,026 1.004
200 5 111,985 0.10 7,320,215 6,232 610,148 68,648 0.932
200 10 222,985 0.20 7,320,215 12,615 1,153,923 214,695 0.889
200 20 511,359 0.46 7,320,215 25,107 1,953,250 797,491 0.875
200 30 800,983 0.72 7,320,215 37,600 2,768,881 1,697,463 0.894
200 40 1,091,544 0.98 7,320,215 49,984 3,578,632 3,188,074 0.964
200 50 1,389,982 1.25 7,320,215 62,557 3,955,536 4,818,800 1.077
300 5 81,718 0.07 17,126,951 4,187 579,144 51,908 0.970
300 10 158,232 0.14 17,126,951 8,347 1,201,525 186,371 0.945
300 20 331,249 0.30 17,126,951 16,612 2,522,389 768,913 0.911
300 30 533,765 0.48 17,126,951 24,796 3,617,474 1,857,947 0.915

Table 2. Number of non-empty cells vs grid size.

84 LEON ŢÂMBULEA, ADRIAN S. DĂRĂBANT, AND ANDREEA NAVROSCHI-SZASZ

analyzing these two factors over a set of queries Q and a typical database, one
can decide whether adding a secondary redundant index like the one proposed
above can improve or not the query response time.

5. Conclusions

In this paper we proposed an improvement on the indexing of a statical
collection of POI objects by adding an additional index. The additional index
uses only redundant references that are copies of some of the entries from the
main grid index. In some cases the proposed method improves the response
time by 10%-15% compared to a typical R-tree or Grid index at the cost
of some additional required memory. Update operations are considered in
the same context as for classical R-trees and Grid indexes and are usually
expensive. This is a well known problem of the R-tree index as well. The
conducted experiments show that there are real life situations where applying
the proposed method helps reducing query response time at the cost of very
little added memory.

References

[1] J. L. Bentley, J. H. Friedman, Data Structures for Range Searching, ACM Comput.
Surv., 11, 4, 397409, 1979.

[2] A. Guttman, R-Trees - A Dynamic Index Structure for Spatial Searching, SIGMOD
Rec., 14(2):4757, 1984.

[3] D. V. Kalashnikov, S. Prabhakar, S. E. Hambrusch, Main Memory Evaluation of Mon-
itoring Queries Over Moving Objects, Distrib. Parallel Databases, 15, 2, 2004, 117-135.

[4] Ling. Liu, M. Tamer zsu (Eds.), Encyclopedia of Database Systems, Springer, 2009.
[5] Y. Manolopoulos, A. Nanopoulos, A.N. Papadopoulos, Y. Theodoridis, R-Trees: Theory

and Applications, Series in Advanced Information and Knowledge Processing, Springer
2005.

[6] Ming Qi, Guangzhong Sun, Yun Xu, Query as Region Partition in Managing Moving
Objects for Concurrent Continuous Query, International Journal of Research in Com-
puter Science, 2 (1): pp. 1-6, 2011.

[7] J. Nievergelt, H. Hinterberger, K. C. Sevcik, The Grid File: An Adaptable, Symmetric
Multikey File Structure, ACM Transactions on Database Systems, 9(1):3871, 1984.

[8] Points of Interest Core, W3CWorking Draft 12 May 2011, http://www.w3.org/TR/poi-
core/.

[9] A.Sabau, Management of Spatio-Temporal Databases, PhD Thesis, Cluj-Napoca 2007.
[10] D. Sidlauskas , S. Saltenis , Ch. W. Christiansen , J. M. Johansen , D. Saulys, Trees

or Grids? Indexing Moving Objects in Main Memory, Proceedings of the 17th ACM
SIGSPATIAL International Conference on Advances in Geographic Information Sys-
tems, 2009, Seattle, Washington.

Babes Bolyai University, Faculty of Mathematics and Computer Science,
Cluj Napoca, Romania

E-mail address: leon@cs.ubbcluj.ro, dadi@cs.ubbcluj.ro, deiush@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LVII, Number 4, 2012

ASPECT MINING. PAST, PRESENT, FUTURE

GRIGORETA S. COJOCAR

Abstract. Aspect mining is a research domain that tries to identify cross-
cutting concerns in already developed software systems. The goal is to
refactor the analyzed system to use aspect oriented programming in order
to ease the maintainability and evolution of the system. In this paper we
briefly describe the aspect mining techniques proposed so far, we analyze
them using three new criteria, and we discuss some possible future research
directions considering the current state of the art.

1. Introduction

Ever increasing software systems made designing and implementing them
a complex task. Software systems are composed of many different concerns,
where a concern is a specific requirement or consideration that must be ad-
dressed in order to satisfy the overall system. The concerns are divided in core
concerns and crosscutting concerns. The core concerns capture the central
functionality of a module, while crosscutting concerns capture system-level,
peripheral requirements that cross multiple modules. The current paradigms
like procedural or object oriented programming provide good solutions for the
design and implementation of core concerns, but they cannot deal properly
with crosscutting concerns. Different approaches have been proposed for the
design and implementation of crosscutting concerns: subject oriented pro-
gramming [38], composition filters [1], adaptive programming [23], generative
programming [10], aspect oriented programming (AOP) [19]. From these ap-
proaches, the aspect oriented programming approach has known the greatest
success both in industry and academia.

In order to design and implement a crosscutting concern, AOP introduces
four new concepts: join point (i.e., a well-defined point in the execution of a
program), pointcut (i.e., groups a set of join points and exposes some of the
values in the execution context of those join points), advice (i.e., a piece of

Received by the editors: November 24, 2012.
2010 Mathematics Subject Classification. 68N19, 68N99.
1998 CR Categories and Descriptors. D.2.7 [Software Engineering]: Distribution,

Maintenance, and Enhancement – Restructuring, reverse engineering, and reengineering .
Key words and phrases. aspect mining, analysis, crosscutting concerns.

85

86 GRIGORETA S. COJOCAR

code that is executed at each join point in a pointcut), and a new modular-
ization unit called aspect. The aspect is woven to generate the final system,
using a special tool called weaver. Some of the benefits that the use of AOP
brings to software engineering are: better modularization, higher productiv-
ity, software systems that are easier to maintain and to evolve. Nowadays,
there are many programming language extensions to support AOP: AspectJ
for Java [3], AspectC++ for C++ [2], etc.

For more than a decade researchers have tried to develop techniques and
tools to (automatically) identify crosscutting concerns in already developed
software systems, without using AOP. This area of research is called Aspect
Mining. The goal is to identify the crosscutting concerns, and then to refactor
them to aspects, in order to obtain a system that can be easily understood,
maintained and modified.

In order to identify crosscutting concerns, the techniques try to discover
one or both symptoms that appear when designing and implementing crosscut-
ting concerns using the existing paradigms: code scattering and code tangling.
Code scattering means that the code that implements a crosscutting concern
is spread across the system, and code tangling means that the code that im-
plements some concern is mixed with code from other (crosscutting) concerns.

Until now, many different approaches have been used for aspect mining,
and different techniques have been proposed. In this paper we try to analyze
the state of the art of aspect mining from the perspective of the proposed goal
and to identify other possible future research directions in this field. The main
contributions of this paper are to analyze the existing aspect mining techniques
using three new criteria: industry usage, IDE integration and integration with
AO refactoring, and to discuss possible new research directions in this field.

The paper is structured as follows. Section 2 presents an overview of
the aspect mining techniques proposed so far. Section 3 analyzes the aspect
mining techniques using three new different criteria. In Section 4 we discuss
some possible future research directions considering the current state of the
art of this field.

2. Overview of Aspect Mining Techniques

The first approaches in aspect mining were query-based search techniques.
The developer had to introduce a so-called seed (eg., a word, the name of
a method or of a field) and the associated tool showed all the places where
the seed was found. Very soon, researchers discovered that this approach to
aspect mining has some important disadvantages: the tool user had to have
an in-depth knowledge of the analyzed system, as he/she had to figure out
the seed(s) to be introduced, and the large amount of time needed in order to

ASPECT MINING. PAST, PRESENT, FUTURE 87

filter the results displayed. There are many query based aspect mining tools
proposed: Aspect Browser [12], The Aspect Mining Tool(AMT) [13], Multi-
Visualizer(AMTEX) [44], Feature Exploration and Analysis Tool(FEAT) [33],
QJBrowser [31], JQuery [17], Prism [45] and Theme/Doc [4]. Except for the
last one, all the other techniques are performing the search in the source code
of the mined system. The Theme/Doc tool is searching for the seed in the
requirements specifications.

Starting with 2004 researchers have focused on developing aspect mining
techniques that do not require an initial seed from the user. These tech-
niques try to identify the crosscutting concerns starting just from some kind
of system representation (the source code, the requirements documentation,
some execution traces, etc.), and are called automated aspect mining tech-
niques. Different approaches were used: metrics, clustering, clone detection
techniques, association rules, formal concept analysis, natural language pro-
cessing, etc. In the following we briefly describe the automated aspect mining
techniques proposed so far.

Marin et al. [26] have proposed an aspect mining technique that looks for
methods that are called from many different call sites and whose functionality
is needed across different methods, classes, and packages. The authors aim at
finding such methods by computing the fan-in metric for each method using
the static call graph of the system. Their approach relies on the observation
that scattered, crosscutting functionality that largely affects the code modu-
larity is likely to generate high fan-in values for key methods implementing
this functionality.

Tonella and Ceccato [40] have proposed to use dynamic code analysis, fea-
ture location and formal concept analysis [11] for aspect mining, as follows.
Execution traces are obtained by running an instrumented version of the pro-
gram under analysis for a set of scenarios (use cases). The relationship between
execution traces and executed computational units (methods) is subjected to
concept analysis. The execution traces associated with the use-cases are the
objects of the concept analysis context, while the executed methods are the
attributes. In the resulting concept lattice, the concepts that satisfy both the
scattering and the tangling conditions are considered as aspect candidates.

Breu and Krinke have proposed an aspect mining technique based on exe-
cution relations [6]. The proposed approach has two versions: a dynamic one
[6] and a static one [20, 21]. They introduce the notion of execution relation,
that describes the kind of relation that may exist between the executions of two
methods. In the dynamic version the execution relations are extracted from
program traces, and in the static version the execution relations are extracted
from the control flow graph. They identify recurring execution patterns which
describe certain behavioral aspects of the software system, and expect these

88 GRIGORETA S. COJOCAR

patterns to be potential crosscutting concerns which describe recurring func-
tionality in the program and thus are possible aspects. The authors have
focused only on method executions as they wanted to analyze object-oriented
systems where logically related functionality is encapsulated in methods.

Sampaio et al. [34] have proposed an approach for mining aspects from
requirements related documents. Their approach builds upon the ideas of
Theme/ Doc approach [4], but uses corpus-based natural language process-
ing techniques in order to effectively enable the identification of aspects in
semi-automated way. The main goal of their approach is to determine poten-
tial aspect candidates in requirements documents regardless of how they are
structured (e.g., informal descriptions, interviews, structured documents).

Kim and Tourwé have proposed an aspect mining technique that relies on
the assumption that naming conventions are the primary means for program-
mers to associate related but distant program entities [41]. Their technique
tries to identify potential aspects and crosscutting concerns by grouping pro-
gram entities with similar names. They apply formal concept analysis where
the objects are all the classes and methods in the analyzed program and the
attributes are the identifiers associated with those classes and methods. The
authors chose for inspection only the groups that contain at least a given num-
ber of objects (a given threshold) and that are crosscutting (i.e., the involved
methods and classes belong to at least two different class hierarchies).

Breu and Zimmermann tried to solve the problem of aspect mining taking a
historical perspective [7]: they mine the history of a project (version archives)
and identify code changes that are likely to be crosscutting concerns. Their
analysis is based on the hypothesis that crosscutting concerns evolve within a
project over time. A code change is likely to introduce such a concern if the
modification gets introduced at various locations within a single code change.

Some authors tried to use clone detection techniques that aim at finding
duplicated code, which may have been slightly adapted from the original. They
base their research on the observation that typically source code implementing
a crosscutting concern involves a great deal of duplications. Since the code
belonging to a crosscutting concern cannot be cleanly captured inside a single
abstraction, using the current programming paradigms, it cannot be reused.
Therefore, developers are forced to write the same code over and over again,
and are tempted to just copy paste the code and adapt it slightly to the
context.

Shepherd et al [36] proposed the first automatic aspect mining technique
based on clone detection. They based their analysis on AspectJ, particularly
on the before advice. The technique consists in identifying initial refactoring
candidates for the before advice using a control-based comparison, followed
by filtering based on data dependence information. They used two types of

ASPECT MINING. PAST, PRESENT, FUTURE 89

clone detection techniques for identifying crosscutting concerns: PDG-based
and AST-based clone detection techniques.

Bruntink et al. [9] tried to evaluate the usefulness and accuracy of clone
detection techniques in aspect mining. The existing clone detectors usually
produce output consisting of pairs of clones, i.e., they report which pairs of
code fragments are similar enough to be called clones. The authors then
investigate the groups of code fragments that are all clones of each other,
called clone classes, in order to find aspect candidates.

Bruntink has extented the approach described in [9] considering metrics
that grade the obtained clone classes [8]. The considered metrics were defined
with the purpose of improving maintainability when aspects are used.

Orlando Mendez has also studied the applicability of clone detection tech-
niques to aspect mining [30]. However, he used only one clone detector and
applied it for one case-study.

Many authors have tried to use clustering for crosccutting concerns identi-
fication. Clustering is a division of data into groups of similar objects [5, 16].
Each group, called cluster, consists of objects that are similar between them-
selves and dissimilar to objects of other groups.

Shepherd and Pollock [37] used clustering to find methods with similar
name as an indication of crosscuttingness. They perform agglomerative hier-
archical clustering in order to group methods. The objects to be clustered are
the names of the methods from the software system under analysis. The au-
thors have developed a tool that helps users navigate and analyze the obtained
clusters. The rest of the approach is just manual analysis of the obtained re-
sults using the tool.

Moldovan and Şerban have proposed a clustering based aspect mining ap-
proach that tries to discover crosscutting concerns by finding attributes of the
code scattering symptom [28]. The authors use the vector space model based
approach with two different vector space models, and different clustering algo-
rithms (hard k-means clustering, fuzzy clustering, hierarchical agglomerative
clustering, genetic clustering, etc) in order to group the methods from the
software system into clusters.

Şerban and Moldovan also proposed an approach based on graph [35]. This
approach is similar to the clustering one, but they use graphs, and in order to
obtain a partition of the software system under analysis.

He and Bai [14] have proposed an aspect mining technique based on dy-
namic analysis and clustering that also uses association rules. They first use
clustering to obtain crosscutting concern candidates and then use association
rules to determine the position of the source code belonging to a crosscutting
concern in order to ease refactoring. Execution traces are generated for an
instrumented version of the software system, and for specified scenarios and

90 GRIGORETA S. COJOCAR

inputs. Every scenario has a called-method sequence. If there exists a group
of codes that has similar action, i.e., similar called-method sequence, and it
frequently appears in execution traces, then a crosscutting concern may exist.
Similar called-method sequences are considered possible crosscutting concerns
code. Clustering analysis is used to find similar called-method sequences. The
scenarios are the objects to be clustered, and the methods from the software
systems are the attributes.

Maisikeli has proposed a dynamic aspect mining technique that uses a
neural network clustering method called Self Organizing Map (SOM) [24].
He used a set of legacy benchmark programs to determine the most relevant
software metrics that can be used for aspect mining (i.e., dynamic fan-in/fan-
out, information flow, method spread, method cohesion contribution, etc.).
The mined software system is executed to compute the value of these metrics.
Based on these metrics he constructs a vector space model that is submitted as
input to SOM for clustering. The results obtained by SOM are then manually
analyzed to identify crosscutting concerns.

Rand Mcfadden has expanded the approach of Moldovan and Serban by
using model based clustering [32]. She investigated the performance of differ-
ent model based clustering algorithms with six vector space models (the two
defined by Moldovan and Serban, and four new ones).

Vidal et al. have proposed another aspect mining technique based on
dynamic analysis and association rule mining [42]. They execute the system
using a set of scenarios in order to obtain execution traces. These execution
traces are given as input to an association rule algorithm to find interesting
associations among methods. The rules obtained are classified and filtered out
in order to remove redundant rules or rules with utility methods.

Huang et al. have proposed an aspect mining technique inspired by the
link analysis of information retrieval technology [15]. They try to discover
the crosscutting concerns in the concern graphs extracted from the program
using a two-state model. They compute the program elements that are in the
scatter and centralization states, and use a ranking technique to select the
crosscutting concerns candidates.

3. Analysis of Aspect Mining Techniques

Many different aspect mining techniques have been proposed so far, some
of them in the last two years. However, if the techniques proposed in the
beginning used very different apprroaches, the last ones (proposed in the last
two-three years) are more an improvement of some of the previously proposed
techniques. Even so, the results obtained by the new aspect mining techniques

ASPECT MINING. PAST, PRESENT, FUTURE 91

did not improve significantly. They obtained better results, but not much
better.

In 2008, Mens et al. [27] have conducted an analysis of the problems the
proposed aspect mining techniques were encountering. They have identified
as main problems: poor precision, poor recall, subjectivity, scalability, lack of
empirical validation. They have also identified the causes of these problems. In
their opinion there are three main root causes: inappropriateness of the tech-
niques used to mine for aspects, lack of a precise definition of what constitutes
an aspect, and inadequate representation of the aspect mining results.

Even though the study conducted by Mens et al. describes most of the
problems that exist in the aspect mining research field, there are other criteria
that must also be considered when analyzing the aspect mining techniques, like
the usage of aspect mining techniques in industry, integration of techniques
with IDEs, and link of these techniques with aspect oriented refactoring tools.
In the following we analyze the aspect mining techniques using these criteria.

3.1. Aspect mining techniques used in industry. Have any of the as-
pect mining techniques been used for complex projects? In Section 2 were
briefly described the aspect mining techniques proposed so far. Most of the
techniques used as case-studies JHotDraw version v5.4b1 [18] and Carla Laffra
implementation of Dijkstra algorithm [22]. However, these case studies can-
not be considered as complex. The former is a small to medium size software
system, but the later case study is a small one consisting of only 6 classes.
There are just a few case studies used (i.e., Tomcat, Eclipse v3.2M3) that can
be considered as more complex. There are also no other reports or surveys
describing the use of any of the aspect mining techniques for more complex
software systems.

3.2. IDE Integration. Even though there are so many aspect mining tech-
niques proposed, most of them cannot be used as there is no associated tool
available. The only technique that can be used by others is the Fanin tech-
nique that has an Eclipse plugin available. The technique proposed by Vidal
et al. [42] also described the use of an Eclipse-based tool, called AspectRT,
however it is not publicly available. There are also a few techniques which can
be recreated by following and using the same tools as the proponents of the
techniques. However, for most of them, there is no tool available which makes
it difficult for others to use them for other case studies or software systems.

3.3. Integration with AO Refactoring. There are a few reports available
[39, 43] about using the results obtained by different aspect mining techniques
in order to refactor the mined system to use aspect oriented constructs. For
both reports the conclusion was that not all the crosscutting concerns that

92 GRIGORETA S. COJOCAR

exist in a software system can be easily redesigned and implemented using
AOP. For some crosscutting concerns, even the aspect oriented paradigm is
not a good solution.

Some refactorings were proposed in order to ease the migration to an
aspect oriented system [29]. However, except for the Vidal et al. technique,
none of the techniques take into the consideration the subsequent refactoring
step. This may be due to the facts that all the techniques still require a
large amount of user involvement in order to analyze the results obtained by
them, and that there are still a large number of false positives in the results
presented. Some of the authors have considered refactoring the case studies
used for aspect mining [25], however the approach used is mainly manually,
without tool support.

4. Future of Aspect Mining

Considering the problems discovered by Mens et al. [27], and the addi-
tional criteria discussed in Section 3, it is very unlikely that any of the existing
aspect mining techniques will be adopted by the industry in the near future.
Without a major change in the approach used for aspect mining, the industry
practitioners will not consider using an aspect mining technique. In the follow-
ing we discuss some possible research directions, that might ease the adoption
from industry.

4.1. Top-down approaches. In the beginning, the researchers have consid-
ered using a top-down approach for aspect mining. Using a catalog of known
crosscutting concerns, these kind of approaches should focus on identifying
the crosscutting concerns from the catalog. This may reduce execution time,
the large number of false positives, and the user involvement in analyzing the
obtained results.

4.2. Identify only refactorable crosscutting concerns. The case studies
used for aspect mining and AO refactoring have already shown that only a
susbset of the crosscutting concerns (CCCs) that exist in an object-oriented
software system may be refactored into aspects. Future aspect mining tech-
niques should focus on identifying only the refactorable crosscutting concerns.
This may ease the integration of the next step: refactoring to use AOP. In this
case, the techniques should also considered the right level of granularity for
refactorable CCCs. The existing aspect mining techniques consider different
levels of granularity: statement for clone-detection based techniques, methods
for almost all techniques. However, there is still the question of which level
is better: statement or method? If we consider only the refactorable CCCs,

ASPECT MINING. PAST, PRESENT, FUTURE 93

we should already know how they will be refactored, and it might help in
identifying the granularity level used for mining CCCs.

4.3. Create a catalogue of refactorable CCCs. In order to identify the
refactorable CCCs, we first need to know the crosscutting concerns that are
refactorable into aspects. For that we need to create a catalogue. We may
start by putting the most known crosscutting concerns that can be designed
and implemented using AOP, like security, transaction management, logging
and add new CCC as they appear in practice.

4.4. Tool support. It is very important that future aspect mining techniques
consider developing an associated tool, that can be integrated with existing
IDEs. Without such tools, the industry might not adopt/use the technique,
even thought it may obtain good results.

5. Conclusions

In this paper we have have briefly described the existing aspect mining
techniques, and, then, we have analyzed them using criteria like industry
adoption, IDE integration, and subsequent refactoring. We have also discussed
some future directions that should be considered for aspect mining.

Many different aspect mining techniques have been proposed so far, how-
ever case studies have shown that they do not perform very good: they have
low precision, a large number of false positive, they still require a large amount
of user involvement, and they cannot be integrated with refactoring tools.

Trying to discover all crosscutting concerns that exist in software systems is
not suited for aspect mining and aspect oriented refactoring. Other approaches
should be considered for aspect mining in order to be able to get near to one of
the objective of aspect mining, that of refactoring the identified crosscutting
concerns into aspects. Considering a top down approach, in the future, may
be more efficient as it may reduce the number of results presented to the
user, it may increase precision, it may decrease the time needed to identify
the crosscutting concerns, and it may also make possible integration with
refactoring tools.

References

[1] Mehmet Aksit. On the Design of the Object Oriented Language Sina. PhD thesis, De-
partment of Computer Science, University of Twente, The Netherlands, 1989.

[2] AspectC++ Homepage. http://www.aspectc.org/.
[3] AspectJ Project. http://eclipse.org/aspectj/.
[4] Elisa Baniassad and Siobhán Clarke. Finding Aspects in Requirements with

Theme/Doc. In Proceedings of Early Aspects 2004: Aspect-Oriented Requirements En-
gineering and Architecture Design, Lancaster, UK, March 2004.

94 GRIGORETA S. COJOCAR

[5] Pavel Berkhin. Survey of Clustering Data Mining Techniques. Technical report, Accrue
Software, San Jose, CA, 2002.

[6] Silvia Breu and Jens Krinke. Aspect Mining Using Event Traces. In Proceedings of
International Conference on Automated Software Engineering (ASE), pages 310–315,
2004.

[7] Silvia Breu and Thomas Zimmermann. Mining Aspects from Version History. In Sebas-
tian Uchitel and Steve Easterbrook, editors, 21st IEEE/ACM International Conference
on Automated Software Engineering (ASE 2006). ACM Press, September 2006.

[8] Magiel Bruntink. Aspect Mining Using Clone Class Metrics. In Proceedings of the 2004
Workshop on Aspect Reverse Engineering (co-located with WCRE 2004), November
2004. Published as CWI technical report SEN-E0502, February 2005.

[9] Magiel Bruntink, Arie van Deursen, Remco van Engelen, and Tom Tourwé. On the
use of clone detection for identifying crosscutting concern code. IEEE Transactions on
Software Engineering, 31(10):804–818, 2005.

[10] Krzysztof Czarnecki and Ulrich Eisenecker. Generative Programming: Methods, Tools,
and Applications. Addison-Wesley, 2000.

[11] Bernhard Ganter and Rudolf Wille. Formal Concept Analysis. Springer-Verlag, Berlin,
Heidelberg, New York, 1996.

[12] William G. Griswold, Yoshikiyo Kato, and Jimmy J. Yuan. AspectBrowser: Tool Sup-
port for Managing Dispersed Aspects. Technical Report CS1999-0640, UCSD, March
2000.

[13] Jan Hannemann and Gregor Kiczales. Overcoming the Prevalent Decomposition of
Legacy Code. In Advanced Separation of Concerns Workshop,at the International Con-
ference on Software Engineering (ICSE), May 2001.

[14] Lili He and Hongtao Bai. Aspect Mining using Clustering and Association Rule Method.
International Journal of Computer Science and Network Security, 6(2):247–251, Febru-
ary 2006.

[15] Jin Huang, Yansheng Lu, and Jing Yang. Aspect mining using link analysis. In Proceed-
ings of the 2010 Fifth International Conference on Frontier of Computer Science and
Technology, pages 312–317. IEEE Computer Society, 2010.

[16] Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data. Prentice Hall,
Englewood Cliffs, New Jersey, 1998.

[17] Doug Janzen and Kris De Volder. Navigating and Querying Code Without Getting Lost.
In Proceedings of Aspect-Oriented Software Development, pages 178–187, Boston, USA,
2003. ACM Press.

[18] JHotDraw Project. http://sourceforge.net/projects/jhotdraw.
[19] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina Lopes,

Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Programming. In Proceedings
European Conference on Object-Oriented Programming, volume LNCS 1241, pages 220–
242. Springer-Verlag, 1997.

[20] Jens Krinke. Mining control flow graphs for crosscutting concerns. In 13th Working Con-
ference on Reverse Engineering: IEEE International Astrenet Aspect Analysis (AAA)
Workshop, pages 334–342, 2006.

[21] Jens Krinke and Silvia Breu. Control-Flow-Graph-Based Aspect Mining. In Workshop
on Aspect Reverse Engineering (WARE), 2004.

[22] Carla Laffra. Dijkstra’s Shortest Path Algorithm.
http://www.dgp.toronto.edu/people/JamesStewart/270/9798s/Laffra/
DijkstraApplet.html.

ASPECT MINING. PAST, PRESENT, FUTURE 95

[23] Karl J. Lieberherr. Component Enhancement: An Adaptive Reusability Mechanism for
Groups of Collaborating Classes. In J. van Leeuwen, editor, Information Processing ’92,
12th World Computer Congress, pages 179–185, Madrid, Spain, 1992. Elsevier.

[24] Sayyed Garba Maisikeli. Aspect mining using self-organizing maps with method level
dynamic software metrics as input vectors. PhD thesis, 2009.

[25] M. Marin. Refactoring JHotDraws Undo concern to Aspectj. In Proceedings of the First
Workshop on Aspect Reverse Engineering (WARE), 2004.

[26] Marius Marin, Arie van, Deursen, and Leon Moonen. Identifying Aspects Using Fan-
in Analysis. In Proceedings of the 11th Working Conference on Reverse Engineering
(WCRE2004)., pages 132–141. IEEE Computer Society, 2004.

[27] Kim Mens, Andy Kellens, and Jens Krinke. Pitfalls in Aspect Mining. In Proceedings of
the 2008 15th Working Conference on Reverse Engineering, WCRE ’08, pages 113–122,
Washington, DC, USA, 2008. IEEE Computer Society.

[28] Grigoreta Sofia Moldovan and Gabriela Serban. Aspect Mining using a Vector-Space
Model Based Clustering Approach. In Proceedings of Linking Aspect Technology and
Evolution (LATE) Workshop, pages 36–40, Bonn, Germany, March, 20 2006. AOSD’06.

[29] M. P. Monteiro and J. M. Fernandes. Towards a catalog of aspect-oriented refactorings.
In Proceedings of the 4th international conference on Aspect-oriented software develop-
ment, pages 111–122, 2005.

[30] Orlando Alejo Mendez Morales. Aspect Mining Using Clone Detection. Master’s thesis,
Delft University of Technology, The Netherlands, August 2004.

[31] Rajeswari Rajagopolan and Kris De Volder. A Query Based Browser Model. Master’s
thesis, University of British Columbia, Canada, July 2002.

[32] Renata Rand Mcfadden. Aspect mining using model-based clustering. PhD thesis, 2011.
AAI3445077.

[33] Martin P. Robillard and Gail C. Murphy. Concern Graphs: Finding and Describing
Concerns Using Structural Program Dependencies. In ICSE ’02: Proceedings of the
24th International Conference on Software Engineering, pages 406–416, 2002.

[34] Américo Sampaio, Neil Loughran, Awais Rashid, and Paul Rayson. Mining Aspects in
Requirements. In Early Aspects 2005: Aspect-Oriented Requirements Engineering and
Architecture Design Workshop (held with AOSD 2005), Chicago, Illinois, USA, 2005.

[35] Gabriela Serban and Grigoreta Sofia Moldovan. A Graph Algorithm for Identification
of Crosscutting Concerns. Studia Universitatis Babes-Bolyai, Informatica, LI(2):53–60,
2006.

[36] David Shepherd, Emily Gibson, and Lori Pollock. Design and Evaluation of an Auto-
mated Aspect Mining Tool. In 2004 International Conference on Software Engineering
and Practice, pages 601–607. IEEE, June 2004.

[37] David Shepherd and Lori Pollock. Interfaces, Aspects, and Views. In Proceedings of
Linking Aspect Technology and Evolution Workshop(LATE 2005), March 2005.

[38] Subject oriented programming. http://www.research.ibm.com/sop/.
[39] Maximilian Störzer, Uli Eibauer, and Stefan Schöffmann. Aspect mining for aspect

refactoring: An experience report. In Towards Evaluation of Aspect Mining, Nantes,
France, July 2006. at ECOOP 2006.

[40] Paolo Tonella and Mariano Ceccato. Aspect Mining through the Formal Concept Anal-
ysis of Execution Traces. In Proceedings of the IEEE Eleventh Working Conference on
Reverse Engineering (WCRE 2004), pages 112–121, November 2004.

[41] Tom Tourwé and Kim Mens. Mining Aspectual Views using Formal Concept Analysis.
In SCAM ’04: Proceedings of the Source Code Analysis and Manipulation, Fourth IEEE

96 GRIGORETA S. COJOCAR

International Workshop on (SCAM’04), pages 97–106, Washington, DC, USA, 2004.
IEEE Computer Society.

[42] Santiago Vidal, Esteban S. Abait, Claudia Marcos, Sandra Casas, and J. Andrés
Dı́az Pace. Aspect mining meets rule-based refactoring. In Proceedings of the 1st Work-
shop on Linking Aspect Technology and Evolution, PLATE ’09, pages 23–27, New York,
NY, USA, 2009. ACM.

[43] Isaac Yuen and Martin P. Robillard. Bridging the gap between aspect mining and refac-
toring. In Proceedings of the 3rd workshop on Linking aspect technology and evolution,
LATE ’07, New York, NY, USA, 2007. ACM.

[44] Charles Zhang, Gilbert Gao, and Arno Jacobsen. Multi Visualizer.
http://www.eecg.utoronto.ca/ czhang/amtex/.

[45] Charles Zhang and Hans-Arno Jacobsen. PRISM is Research In aSpect Mining. In
OOPSLA, Vancouver, British Columbia, Canada, 2004. ACM Press.

Babeş-Bolyai University, Department of Computer Science, 1 M. Kogălniceanu
St., 400084 Cluj-Napoca, Romania

E-mail address: grigo@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LVII, Number 4, 2012

HOW THE KERNELS CAN INFLUENCE IMAGE

CLASSIFICATION PERFORMANCE

LAURA DIOŞAN(1) AND ALEXANDRINA ROGOZAN(2)

Abstract. Support Vector Machines deliver state-of-the-art performance
in real-world applications and are now established as one of the standard
tools for machine learning and data mining. A key problem of these meth-
ods is how to choose an optimal kernel and how to optimise its parameters.
Selection of the most appropriate kernel highly depends on the problem
at hand and fine tuning its parameters can easily become a tiresome and
awkward task. Our purpose is to investigate how the used kernels and their
parameters influence the learning performance in the context of a partic-
ular classification task: object recognition. The numerical results indicate
that the best kernel function depends on the problem to be solved.

1. Introduction

The performance of a classification algorithm is strongly influenced by two
ingredients: first, a suitable representation of the objects to be categorized and
second a powerful decision maker algorithm on top of this representation. Even
if the first aspect has been deeply discussed and analysed in the community of
computer vision and the second one inside the machine learning community,
the combination of them (how to combine the image representation with a
learning algorithm) is still a highly challenging problem.

One of the most important issues in computer vision is how to extract
relevant image features. The features that characterise an image can be clas-
sified from many points of view. An important criterion is the area from that
the feature is extracted (global features and local feature). Another impor-
tant criterion is the complexity of extraction (low-level features or high level
features).

Received by the editors: November 25, 2012.
2000 Mathematics Subject Classification. 68T05,91E45.
1998 CR Categories and Descriptors. I.2.6 [Artificial Intelligence]: Learning – Concept

learning .
Key words and phrases. Object recognition, Kernel descriptors, Support Vector Machines,

Kernel selection.

97

98 LAURA DIOŞAN AND ALEXANDRINA ROGOZAN

Furthermore that to extract these features from an image, it is very impor-
tant to store all these characteristics in an adequate representation such that
a learning algorithm can work with them in order to label the corresponding
images by a particular class. The most efficient representations are: bag of
words [21] and kernels of local features [8].

The second aspect that must be considered when the problem of object
recognition has to be solved is the classification algorithm. Since the classi-
fication must be performed in an automatically manner, a machine learning
algorithm can be utilised. The general problem of machine learning is to search
a, usually very large, space of potential hypotheses to determine the one that
will best fit the data and any prior knowledge. In supervised image classifica-
tion, we are given a training set of images and their corresponding labels. The
goal is to learn (based on the training set) a classifier to label unseen images.

There are many learning algorithms today and their performances (esti-
mated by different measures, e.g. classification accuracy, solution correctness,
solution quality or speed of performance) are related not only to the problem
to be solved, but also to their parameters. Therefore, the best results can be
achieved only by identifying the optimal values of these parameters. Although
this is a very complex task, different optimisation methods have been devel-
oped in order to optimise the parameters of Machine Learning algorithms.

In this paper we present a short survey of the most important image fea-
tures and how they can be involved in a particular representation suitable for
an automatically learning process based on kernel methods, since the kernel-
based methods have been proved to reach good efficiency in solving such type
of problems (with a particular emphasis of Support Vector Machines (SVMs)
[23, 24]). Furthermore, we will compare the classification performance by tak-
ing into account different image representations and different kernels involved
in SVM learning. In fact, we will develop a process of kernel selection at two
levels:

• image processing level - at this stage we try to identify which is the
most suitable kernel patch descriptors and its kernel in order to trans-
form an image into an efficient and representative vector of features;
• learning level - here we try to identify the kernel involved in the decision
process with the highest performance; the kernel is utilised to map the
input of the classification algorithm from a non-linear separable space
into a linear separable one.

The paper is organized as follows: Section 2 outlines the most important
image features and representations, while Section 3 outlines the theory behind
SVM classifiers giving a particular emphasis to the kernel functions. This is

HOW KERNELS CAN INFLUENCE IMAGE CLASSIFICATION PERFORMANCE 99

followed by Section 4 where our study case and the results of the experiments
are presented and discussed. Finally, Section 5 concludes the paper.

2. Image representation

A highly challenging problem in computer vision is how to extract relevant
image features. The features that characterise an image can be classified from
many points of view. An important criterion is the area from that the feature is
extracted: if the entire image is used, then some global features are computed,
while if one or more image regions (patches) are utilised, then local features
are determined. Another important criterion is the complexity of extraction.
Image features can be extracted from scratch that means the features are
extracted directly from the image (and in this case we discuss about low-level
features) or can be computed based on some previously extracted features (in
this case high-level features are obtained).

Examples of low-level features or image descriptors include: characteris-
tics extracted from an image (global feature) or from one or more patches of
an image (local features) around salient interest points or regular grids, char-
acteristics regarding the edges, corners or blobs from the image/patches. The
most popular (due to their success) low-level image descriptors are:

• orientation histograms such as Scale-Invariant Feature Transform (SIFT)
[15] - based on a rectangular grid [12];
• Gradient Location and Orientation Histogram (GLOH) [17] - based on
a log-polar grid [12];
• Histogram of Oriented Gradients (HOG) [6] - based on a radial grid
[12];
• Speeded-Up Robust Features (SURF) and Haar [12];

while one of the best high-level descriptor is the kernel view of orientation
histograms [1]. The results presented by L. Bo in [1] indicate that the perfor-
mance of an image classifier based on the family of kernel descriptors surpasses
the performance of a classifier that works only with low-level features (for in-
stance a classifier based on SIFT features or only on HOG). In their work,
the authors have indicated that the kernel descriptors are able to convert the
pixel attributes into compact patch-level features. For pixel attributes the
authors have considered the orientation, the position and the colour of each
pixel (from a patch). Furthermore, the authors have introduced three types
of match kernels to measure similarities between image patches. They have
introduced these new similarity measures since the previous ones (based on
HOG) suffer from discretisation (HOG can be considered a special case of
linear kernels, but with a restrictive set of values – 1 or 0). The investigated
match kernels from [1] are:

100 LAURA DIOŞAN AND ALEXANDRINA ROGOZAN

• the gradient match kernel (able to capture image variations) based on
a kernel of magnitudes, an orientation kernel and a position kernel;
• the colour kernel (able to describe image appearance) based on a colour
kernel and a position kernel;
• the local binary pattern kernel (able to capture local shape more ef-
fectively) based on a kernel of standard deviations of neighbour pixels,
a kernel of binarized pixel value differences in a local window and a
position kernel.

Furthermore that to extract these features from an image, it is very impor-
tant to store all these characteristics in an adequate representation such that
a learning algorithm can work with them in order to label the corresponding
images by a particular class. These features extracted from an image can be
used directly or indirectly by a classification algorithm. In the first case, the
image features are simply concatenated into vectors that are utilised as input
data by the classifier. The main drawback of such approach is the length of
input vectors (sometimes it can be huge and the computational cost of the
learning process is very large). Therefore, other efficient representations of
image features have been identified and two of them are:

• Bag of words [21] - each local feature is represented with the closest
visual word (from a predefined visual vocabulary) and a histogram
is computed by counting the occurrence frequencies of words in the
entire image (global representation). This histogram is actually used
as image descriptor by a learning/recognition algorithm.
• Kernels over local features [8] – a kernel function is required in order to
compare two images by using the previously extracted features (local
descriptors). The local features are mapped into a low dimensional
space by using kernel functions on sets such as:

– sum match kernel [11] - adds all kernels corresponding to all com-
binations of local features extracted from two images;

– neighbourhood match kernel [18] - similar to the previous one,
but take into account the spatial location of local features also;

– pyramid match kernels [9, 13, 14] - the local features are trans-
formed into a multi-resolution histogram;

– efficient match kernels [2] - set-level features are constructed by
averaging the resulting feature vectors.

3. Learning algorithm

The general problem of Machine Learning is to search a, usually very
large, space of potential hypotheses to determine the one that will best fit
the data and any prior knowledge. In 1995, SVMs marked the beginning of a

HOW KERNELS CAN INFLUENCE IMAGE CLASSIFICATION PERFORMANCE 101

new era in the paradigm of learning from examples. Rooted to the Statistical
Learning Theory and the Structural Risk Minimization principle developed by
Vladimir Vapnik at AT&T in 1963 [23, 24], SVMs gained quickly attention
from the Machine Learning community due to a number of theoretical and
computational merits.

SVMs are a group of supervised learning methods that can be applied to
classification or regression. SVMs arose from statistical learning theory; the
aim being to solve only the problem of interest without solving a more diffi-
cult problem as an intermediate step. SVMs are based on the structural risk
minimisation principle, closely related to regularisation theory. This princi-
ple incorporates capacity control to prevent over-fitting and thus is a partial
solution to the bias-variance trade-off dilemma.

One issue with SVMs is finding an appropriate positive definite kernel
(and its parameters) for the given data. A wide choice of kernels already ex-
ists. Many data or applications may still benefit from the design of particular
kernels, adapted specifically to a given task (i.e. kernels for vectors, kernels
for strings, kernels for graphs, Fisher kernels or rational kernels). There are
only some hints for working with one or another of these classic kernels, be-
cause there is no rigorous methodology to choose a priori the appropriate one
between them. Moreover, the kernel parameters influence the performance
of the SVM algorithm. The selection of the penalty error for an SVM (that
controls the trade-off between maximizing the margin and classifying without
error) is also critical in order to obtain good performances. Therefore, one has
to optimise the kernel function, the kernel parameters and the penalty error of
the SVM algorithm in order to guarantee the robustness and the accuracy of
an SVM algorithm. Chapelle [4] has proposed to denote the kernel and SVM
parameters as hyper-parameters.

3.1. Generalities of SVM. Initially, SVM algorithm has been proposed in
order to solve binary classification problems [23]. Later, these algorithms have
been generalized for multi-classes problems. Consequently, we will explain the
theory behind SVM only on binary-labelled data.

Suppose the training data has the following form: D = (xi, yi)i=1,m, where

xi ∈ ℜd represents an input vector and each yi, yi ∈ {−1,+1}, the output label
associated to the item xi. SVM algorithm maps the input vectors to a higher
dimensional space where a maximal separating hyper-plane is constructed [23].
Learning the SVM means to minimize the norm of the weight vector (w in Eq.
(1)) under the constraint that the training items of different classes belong
to opposite sides of the separating hyper-plane. Since yi ∈ {−1,+1} we can
formulate this constraint as:

(1) yi(w
Txi + b) ≥ 1, ∀i ∈ {1, 2, . . . ,m},

102 LAURA DIOŞAN AND ALEXANDRINA ROGOZAN

where the primal decision variables w and b define the separating hyper-plane
and vT represents the transpose of v.

The items that satisfy Eq. (1) with equality are called support vectors
since they define the resulting maximum-margin hyper-planes. To account
for misclassification, e.g. items that do not satisfy Eq. (1), the soft margin
formulation of SVM has introduced some slack variables ξi ∈ ℜ [5].

Moreover, the separation surface has to be nonlinear in many classification
problems. SVM was extended to handle nonlinear separation surfaces by using
a feature function ϕ(x). The SVM extension to nonlinear datasets is based
on mapping the input variables into a feature space F of a higher dimension
and then performing a linear classification in that higher dimensional space.
The important property of this new space is that the data set mapped by ϕ
might become linearly separable if an appropriate feature function is used,
even when that data set is not linearly separable in the original space.

Hence, to construct a maximal margin classifier one has to solve the convex
quadratic programming problem encoded by Eq. (2), which is the primal
formulation of it:

(2)
minimisew,b,ξ

1
2w

Tw + C
∑m

i=1 ξi
subject to: yi(w

Tϕ(xi) + b) ≥ 1− ξi,
ξi ≥ 0,∀i ∈ {1, 2, . . . ,m}.

The coefficient C (usually called penalty error or regularization parameter) is
a tuning parameter that controls the trade off between maximizing the margin
and classifying without error. Larger values of C might lead to linear functions
with smaller margin, allowing to classify more examples correctly with strong
confidence. A proper choice of this parameter is crucial for SVM to achieve
good classification performance.

Instead of solving Eq. (2) directly, it is a common practice to solve its
dual problem, which is described by Eq. (3):

(3)
maximisea∈ℜm

∑m
i=1 ai −

1
2

∑m
i,j=1 aiajyiyjϕ(xi)

Tϕ(xj)

subject to
∑m

i=1 aiyi = 0,
0 ≤ ai ≤ C, ∀i ∈ {1, 2, . . . ,m}.

In Eq. (3), ai denotes the Lagrange variable for the ith constraint of Eq.
(2).

The optimal separating hyper-plane f(x) = w · ϕ(x) + b, where w and b
are determined by Eq. (2) or Eq. (3) is used to classify the un-labelled input
data xk:

(4) yk = sign

∑
xi∈S

aiϕ(xi)
Tϕ(xk) + b

 ,

HOW KERNELS CAN INFLUENCE IMAGE CLASSIFICATION PERFORMANCE 103

where S represents the set of support vector items xi.
We will see in the next section that is more convenient to use a kernel

function K(x, z) instead of the dot product ϕ(x)Tϕ(z).

3.2. Kernel formalism. The original optimal hyper-plane algorithm pro-
posed by Vapnik in 1963 was a linear classifier [23]. However, in 1992, Boser,
Guyon and Vapnik [3] have suggested a way to create non-linear classifiers by
applying the kernel trick. Kernel methods work by mapping the data items
into a high-dimensional vector space F , called feature space, where the sepa-
rating hyper-plane has to be found [3]. This mapping is implicitly defined by
specifying an inner product for the feature space via a positive semi-definite
kernel function: K(x, z) = ϕ(x)Tϕ(z), where ϕ(x) and ϕ(z) are the trans-
formed data items x and z [20]. Note that all we required is the result of such
an inner product. Therefore we do even not need to have an explicit repre-
sentation of the mapping ϕ, neither to know the nature of the feature space.
The only requirement is to be able to evaluate the kernel function on all the
pairs of data items, which is much easier than computing the coordinates of
those items in the feature space.

The kernels that correspond to a space embedded with a dot product
belong to the class of positive definite kernels. This has far-reaching con-
sequences. The positive definite and symmetric kernels verify the Mercer’s
theorem [16] - a condition that guarantees the convergence of training for dis-
criminant classification algorithms such as SVMs. The kernels of this kind
can be evaluated efficiently even though they correspond to dot products in
infinite dimensional dot product spaces. In such cases, the substitution of the
dot product with the kernel function is called the kernel trick [3].

In order to obtain an SVM classifier with kernels one has to solve the
following optimization problem:

(5)
maximisea∈ℜm

∑m
i=1 ai −

1
2

∑m
i,j=1 aiajyiyjK(xi, xj)

subject to
∑m

i=1 aiyi = 0,
0 ≤ ai ≤ C, ∀i ∈ {1, 2, . . . ,m}.

In this case, Eq. (4) becomes:

(6) yk = sign

∑
xi∈S

aiK(xi, xk) + b

 ,

where S represents the set of support vector items xi.
There are a wide choice for a positive definite and symmetric kernelK from

Eq. (6). The selection of a kernel has to be guided by the problem that must
be solved. Choosing a suitable kernel function for SVMs is a very important
step for the learning process. There are few if any systematic techniques to

104 LAURA DIOŞAN AND ALEXANDRINA ROGOZAN

assist in this choice. Until now, different kernels for vectors have been proposed
[22]; the most utilised of them by an SVM algorithm are listed in Table 1.

Table 1. The expression of several classic kernels.

Name Expression Type

Linear KLin (x, z) = xT · z projective
Polynomial KPol (x, z) = (xT · z + coef)d projective

Normalised Polynomial KNPol(x, z) =
KPol(x,z)√

KPol(x,x)KPol(z,z)
projective

Laplacian KLapl(x, z) = exp(− |x−z|
σ) radial

Exponentail KExp(x, z) = exp(− |x−z|
2σ2) radial

Gaussian KGauss(x, z) = exp(− |x−z|2
2σ2) radial

Euclidean KEuclid(x, z) =
|x−z|2
2σ2 radial

While one of the first feelings about SVM algorithms is that they can solve
a learning task automatically, it actually remains challenging to apply SVMs
in a fully automatic manner. Questions regarding the choice of the kernel
function and the hyper-parameters values remain largely empirical in real-
world applications. While default setting and parameters are generally useful
as a starting point, major improvements can result from careful choosing of
an optimal kernel. There are many types of kernels for vectors and several
criteria could be used for classifying them.

While SVM classifiers intrinsically account for a trade off between model
complexity and classification accuracy [24], the generalization performance
is still highly dependent on appropriate selection of the penalty error C and
kernel parameters. Thus, several methods could be used to optimise the hyper-
parameters of an SVM classifier.

Ideally, we would like to choose the value of the kernel parameters that
minimise the true risk of the SVM classifier. Unfortunately, since this quantity
is not accessible, one has to build estimates or bounds for it.

Cross-validation is a popular technique for estimating the generalization
error and there are several interpretations [25]. In k-fold cross-validation, the
training data is randomly split into k mutually exclusive subsets (or folds) of
approximately equal size. The SVM decision rule is obtained by using k − 1
subsets on training data and then tested on the subset left out. This procedure
is repeated k times and in this manner each subset is used for testing once.
Averaging the test error over the k trials gives a better estimate of the expected
generalization error.

HOW KERNELS CAN INFLUENCE IMAGE CLASSIFICATION PERFORMANCE 105

4. Study case

4.1. Proposed framework. Our aim is to investigate how the kernel func-
tion influences the performance of learning process. Therefore, we considered
the framework proposed by L. Bo [1] for image classification and we test dif-
ferent kernel functions. We already establish that the selection of the kernel
function is very important for SVM (see [7]). This time, our investigation
about how kernel function affects classification process is developed at two
levels:

• at the level of image descriptor and
• at the level of learning process.

In the first case, based on the available code of Kernel descriptors devel-
oped by Xiaofeng Ren (http : //www.cs.washington.edu/ai/Mobile Robotics
/projects/kdes/), we have tested different kernels when the local features are
extracted from an image. Because we work only with gray images, we inves-
tigate only the kernels descriptors able to capture image variations (gradient
match kernels [1]). As we already presented in Section 2, the Bo’s gradient
match kernel is composed by three kernels: a kernel of magnitudes, an orien-
tation and a position kernel.

The magnitude kernel is a linear one and its role is to measure the similar-
ity of gradient magnitudes of two pixels. The magnitude kernel type cannot
be changes since it must be an equivalent of histogram of gradients in the
feature map (a pixel has associated a feature vector obtained by multiplying
the magnitude and the orientation of a pixel over all considered orientation
bins).

The other two kernels involved in Ren’s computation of the gradient match
kernel, the orientation kernel (for computing the similarity of gradient ori-
entations) and the position kernel (for measuring how close two pixels are
spatially), are actually Gaussian kernels. Therefore, we have changes the im-
plementation and we have involved in the feature extraction process more
possible orientation and position kernels (Exponential, Laplacian, Euclidean).
The expression of these kernels is given in Table 1.

In the second case, that of learning, the classifier utilised in our experi-
ments is a kernel-based SVM. Again, we have tried to use several kernels with
different parameters during the learning process in order to identify the best
one. These kernels are the linear kernel, the Polynomial kernel, the Gauss-
ian kernel and the Normalised Polynomial kernel. For the Polynomial kernel
several exponents have been tested (2, 3), for parameter 1

2σ2 of Gaussian ker-
nel the following values have been checked: 0.1, 0.01, 0.001, 0.0001 and for
Normalised Polynomial kernel the exponent was 2.

106 LAURA DIOŞAN AND ALEXANDRINA ROGOZAN

The dual version of the optimisation problem which arises during the train-
ing of support vector machines was solved by Sequential minimal optimization
(SMO) algorithm [19], since it is able to quickly solved the quadratic program-
ming optimisation problem of SVM. We have chosen this formulation of SVM
since the duality theory provides a convenient way to deal with the constraints
and, in this form, the optimisation problem can be solved in terms of dot prod-
ucts, that allows using the kernel trick. Furthermore, SMO requires an amount
of memory that increases only linear with the training set size, being able to
handle very large training sets - as in the image classification case. These
aspects are different to L. Bo’s framework that is based on primal formulation
of SVM and on conjugate gradient optimisation methods (in fact, Newton
optimisation).

4.2. Numerical experiments. Several numerical experiments about how
kernel selection influences the classification process in the case of image recog-
nition task are presented. A benchmark (http://www.cs.unc.edu/ lazebnik)
was considered in our study-case. More details about these data can be found
in [14].

For all datasets a binary classification problem was actually solved: D1
corresponds to a classification between bedroom and kitchen images, D2 cor-
responds to a decision coast images vs. forest images, while in D3 we have
to delimitate industrial scenes to suburban scenes. In all the cases, 50 images
are utilised (the decision model is trained on 2/3 of them, while 1/3 of images
are used for testing). All the experiments are performed by using a cross-
validation technique of 3 folds and they are performed by using the Weka tool
[10].

In order to measure the classification performance, the accuracy rate was
actually computed. The accuracy rate represents the number of correctly
classified items over the total number of items from a given data set.

In Tables 2, 3, 4 are presented the average accuracy rates for each dataset
by considering different image descriptor kernels (when the SVM input vec-
tors are actually constructed) and different SVM kernel functions for the first
dataset (D1), the second dataset (D2) and the third dataset (D3), respectively.

Several remarks cab ne done based on the results from Tables 2, 3, 4.
Regarding the kernel descriptors, the Gaussian kernel is the best one in 2
cases (D2 and D3), but for the first data the Exponential kernel perform
better. Furthermore, if we consider all combinations, the Exponential and the
Gaussian kernel have won 9 times each in terms of accuracy rate. Taking into
account the computation time required for evaluating the kernel expression,
we promote to use the exponential kernel (since involve just a simple norm,
not a square one – see Table 1).

HOW KERNELS CAN INFLUENCE IMAGE CLASSIFICATION PERFORMANCE 107

SVM kernel vs. Kernel Descriptor Exponential Gaussian Laplacian Euclid
Lin 74% 69% 65% 45%
Poly(2) 70% 67% 62% 50%
Poly(3) 59% 67% 55% 53%
Gaussian(0.1) 51% 55% 48% 46%
Gaussian(0.01) 50% 52% 43% 49%
Gaussian(0.001) 54% 54% 40% 42%
Gaussian(0.0001) 49% 49% 38% 53%
NormPoly(2) 49% 51% 45% 54%

Table 2. Accuracy rates obtained for dataset D1 by SVM
algorithm with different kernel functions on images represented
by different kernel descriptors.

SVM kernel vs. Kernel Descriptor Exponential Gaussian Laplacian Euclid
Lin 97% 99% 98% 66%
Poly(2) 94% 96% 96% 67%
Poly(3) 80% 80% 95% 63%
Gaussian(0.1) 83% 83% 85% 59%
Gaussian(0.01) 80% 80% 72% 60%
Gaussian(0.001) 57% 57% 72% 63%
Gaussian(0.0001) 56% 56% 75% 51%
NormPoly(2) 62% 62% 64% 49%

Table 3. Accuracy rates obtained for dataset D2 by SVM
algorithm with different kernel functions on images represented
by different kernel descriptors.

SVM kernel vs. Kernel Descriptor Exponential Gaussian Laplacian Euclid
Lin 79% 88% 80% 59%
Poly(2) 83% 80% 77% 57%
Poly(3) 68% 65% 66% 54%
Gaussian(0.1) 65% 63% 68% 44%
Gaussian(0.01) 60% 63% 56% 52%
Gaussian(0.001) 65% 51% 60% 54%
Gaussian(0.0001) 67% 57% 63% 49%
NormPoly(2) 57% 49% 57% 53%

Table 4. Accuracy rates obtained for dataset D3 by SVM
algorithm with different kernel functions on images represented
by different kernel descriptors.

108 LAURA DIOŞAN AND ALEXANDRINA ROGOZAN

Regarding the SVM kernels, the best results are obtained for all datasets
by using a linear kernel (that means the data can be simple separate by a
hyper plane, without requiring hyper spheres or conjunction of feature as in
the case of Gaussian and Polynomial kernel, respectively).

5. Conclusions

An important problem was investigated in this paper: how kernel functions
can affect the performance of object recognition process. In fact, the kernel
functions are involved at two levels: that of extraction of image features and
that of learning method. The most promising kernel function involved in the
classification algorithm seems to be the simple linear one, while in the case of
kernel descriptors (that extract image features) the results indicate that we
cannot identify a best kernel. Each problem seems to be solved better with
other kernel type. Therefore, we plan to investigate how we can automatically
adapt the kernel descriptor (and its parameters) to a given set of images
in order to increase the classification performance, but without reducing the
generality and the extrapolation power of the method. Furthermore, other
match kernels (colour and shape kernels) can be considered.

References

[1] Bo, L., Ren, X., and Fox, D. Kernel descriptors for visual recognition. In NIPS
(2010), J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta,
Eds., Curran Associates, Inc, pp. 244–252.

[2] Bo, L., and Sminchisescu, C. Efficient match kernel between sets of features for
visual recognition. In NIPS (2009), Y. Bengio, D. Schuurmans, J. D. Lafferty, C. K. I.
Williams, and A. Culotta, Eds., Curran Associates, Inc, pp. 135–143.

[3] Boser, B. E., Guyon, I., and Vapnik, V. A training algorithm for optimal margin
classifiers. In COLT (1992), D. Haussler, Ed., ACM Press, pp. 144–152.

[4] Chapelle, O., Vapnik, V., Bousquet, O., and Mukherjee, S. Choosing multiple
parameters for Support Vector Machines. Machine Learning 46, 1/3 (2002), 131–159.

[5] Cortes, C., and Vapnik, V. Support-Vector Networks.Machine Learning 20, 3 (1995),
273–297.

[6] Dalal, N., and Triggs, B. Histograms of Oriented Gradients for human detection.
In CVPR (2005), C. Schmid, S. Soatto, and C. Tomasi, Eds., vol. 2, pp. 886–893.

[7] Diosan, L., Rogozan, A., and Pecuchet, J.-P. Improving classification perfor-
mance of Support Vector Machine by genetically optimisation of kernel shape and
hyper-parameters. Applied Intelligence 2, 36 (2012), 280–294.

[8] Eichhorn, J., and Chapelle, O. Object categorization with svm: Kernels for local
features. Tech. rep., In Advances in Neural Information Processing Systems, 2004.

[9] Grauman, K., and Darrell, T. J. The pyramid match kernel: Discriminative clas-
sification with sets of image features. In ICCV (2005), pp. II: 1458–1465.

[10] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten,
I. H. The weka data mining software: an update. SIGKDD Explorations 11, 1 (2009),
10–18.

HOW KERNELS CAN INFLUENCE IMAGE CLASSIFICATION PERFORMANCE 109

[11] Haussler, D. Convolution kernels on discrete structure. Tech. Rep. UCSC-CRL-99-10,
University of California at Santa Cruz, Santa Cruz, CA, USA, July 1999.

[12] Johnson, M. Generalized descriptor compression for storage and matching. In BMVC
(2010), F. Labrosse, R. Zwiggelaar, Y. Liu, and B. Tiddeman, Eds., British Machine
Vision Association, pp. 1–11.

[13] Kumar, A., and Sminchisescu, C. Support kernel machines for object recognition. In
ICCV (2007), pp. 1–8.

[14] Lazebnik, S., Schmid, C., and Ponce, J. Beyond bags of features: Spatial pyramid
matching for recognizing natural scene categories. In CVPR (2006), pp. II: 2169–2178.

[15] Lowe, D. G. Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision 60, 2 (2004), 91–110.

[16] Mercer, J. Functions of positive and negative type and their connection with the
theory of integral equations. Philosophical Transactions of the Royal Society 83, 559
(1909), 415–446.

[17] Mikolajczyk, K., and Schmid, C. A performance evaluation of local descriptors.
IEEE Trans. Pattern Anal. Mach. Intell 27, 10 (2005), 1615–1630.

[18] Parsana, M., Bhattacharya, S., Bhattacharyya, C., and Ramakrishnan, K. R.
Kernels on attributed pointsets with applications. In NIPS (2007), J. C. Platt, D. Koller,
Y. Singer, and S. T. Roweis, Eds., Curran Associates, Inc, pp. 1129–1136.

[19] Platt, J. Fast training of Support Vector Machines using Sequential Minimal Opti-
mization. In Advances in Kernel Methods — Support Vector Learning (Cambridge, MA,
1999), B. Schölkopf, C. J. C. Burges, and A. J. Smola, Eds., MIT Press, pp. 185–208.

[20] Schölkopf, B. The kernel trick for distances. In NIPS (Cambridge, MA, 2000), T. K.
Leen, T. G. Dietterich, and V. Tresp, Eds., MIT Press, pp. 301–307.

[21] Sivic, J., and Zisserman, A. Video google: A text retrieval approach to object match-
ing in videos. In ICCV (2003), pp. 1470–1477.

[22] Taylor, J. S., and Cristianini, N. Kernel Methods for Pattern Analysis. Cambridge
University Press, 2004.

[23] Vapnik, V. The Nature of Statistical Learning Theory. Springer, 1995.
[24] Vapnik, V. Statistical Learning Theory. Wiley, 1998.
[25] Wahba, G., Lin, Y., and Zhang, H. GACV for Support Vector Machines. In Advances

in Large Margin Classifiers, B. Smola and S. SchRolkopf, Eds. MIT Press, Cambridge,
MA, 1999.

(1) Department of Computer Science, Babeş-Bolyai University, Cluj-Napoca,
Romania

E-mail address: lauras@cs.ubbcluj.ro

(2) LITIS, EA - 4108, INSA, Rouen, France
E-mail address: arogozan@insa-rouen.fr

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LVII, Number 4, 2012

BUILDING INTELLIGENT KNOWLEDGE MANAGEMENT

SYSTEMS

OVIDIU PÂRVU AND SANDA M. DRAGOŞ

Abstract. Knowledge management systems are used in most of the large
companies and institutions throughout the world. Currently, most of them
are not designed to adapt to the dynamic changes of the surrounding en-
vironment. Intelligent plugins can be integrated in these systems in order
to increase their reactivity and adaptability. In the present paper, we de-
scribe an intelligent plugin for a knowledge management system (KMS)
used for managing the PhD theses in the Babes-Bolyai University. The
KMS which uses our plugin is called Doctorate Theses Administration
Platform (DTAP) [9, 10]. Our plugin uses an intelligent agent in order
to help users go through all the required steps of handling a thesis. The
behaviour of the application changes dynamically based on the interaction
with the users. Results show that both the time needed to manage the
theses and number of encountered errors were reduced considerably after
the integration of the above mentioned components.

1. Introduction

The term Knowledge Management System has many definitions in the
literature, but in the present paper we will use only the meaning indicated
in [2, 11]: “The KMS represents a class of information systems (ISs) applied
to managing organizational knowledge”. Simply stated, these systems are used
for managing the knowledge of an organization. The collective knowledge of
the organization is stored either in a repository or in an archive of documents.
At micro level everyone in the organization is contributing to this database,
so it can be seen as a dynamic entity which is continuously evolving over

Received by the editors: November 12, 2012.
2010 Mathematics Subject Classification. 68T05.
1998 CR Categories and Descriptors. J.1 [Computer Applications]: Administrative

Data Processing – Education; I.2.1 [Computing Methodologies]: Artificial Intelligence –
Applications and Expert Systems; H.3.4 [Information Systems]: Information Storage and
Retrieval – Knowledge Management Systems and Expert Systems.

Key words and phrases. knowledge management system, education, reinforcement learn-
ing, templating system.

110

BUILDING INTELLIGENT KNOWLEDGE MANAGEMENT SYSTEMS 111

time. A KMS eases the management of the information by using its built in
mechanisms.

According to [1, 2] the most important functions of such a system are:
creation, storage and retrieval, transfer and application of knowledge.

The creation of knowledge is accomplished by developing new knowledge
or replacing existing one from the repository. The KMS includes a repository
which allows sharing, creating, amplifying and enlarging the organizational
knowledge [2]. Everyone has to collaborate and participate to the contents of
the database in order for it to expand. Whether it is a document, a procedure
or a new standard, it is important for it to be integrated in the system which
every colleague can access.

This brings us to the second function of storing (and retrieving) data
from the repository of the KMS. These are the basic operations which must
be carried out in order for the information exchange to take place. Simple
file sharing is not enough and specific tools which aid collaboration should
be provided. These tools can include database interrogation forms, a logging
system which records everything that has been done and maybe also small
software modules which have an intelligent tutor integrated. Using these tools,
even inexperienced employees can retrieve information from the database in a
format which is easy to understand. The ones who share or store information
must find the experience both professionally and personally rewarding, such
that they remain motivated to use the system [12]. Some companies use
rewarding systems to motivate experienced employees to take the time to
document their work even if they may not ever need to make use of such
knowledge. In other companies, it is part of the job description to write small
tutorials and guides, such that everyone has to do it. There are also companies
in which every modification is logged, such that history records are generated
automatically and can be used as samples for good/bad practices.

A KMS, as its name suggests, is not about exchanging information, but
knowledge. It is clear why there is a need for the third function which is the
transfer of knowledge between employees. In order for the exchange to be
done in an optimal way, the system must provide an efficient communication
support not only between individuals, but also between different departments
within the same company. For instance, employees from one department may
post a question on a forum and colleagues from all over the company may view
and answer this question. Another useful utility is one that allows employees
to check the changes done by other colleagues.

The aim of a KMS is that employees collaborate and apply in practice the
gained knowledge in order to obtain better results than before.

112 OVIDIU PÂRVU AND SANDA M. DRAGOŞ

2. Doctorate Theses Administration Platform

These mechanisms of a KMS can be applied when designing an application
for managing the PhD theses in a university. We implemented such an appli-
cation for the Babeş-Bolyai. It is called the Doctorate Theses Administration
Platform and we will refer to it as DTAP in the rest of the paper. Previous
to DTAP, the employees of the Institute of Doctoral Studies (IDS) were using
obsolete and time consuming methods for managing PhD theses. This led
to the implementation of this system. First of all, the information regarding
the PhD students was archived on paper. Therefore, searching for a specific
thesis or backing up the entire archive implied a lot of work. Secondly, all
the documents required by the Romanian Educational system were filled in
manually by the employees of the IDS using Microsoft Word templates. This
was both time consuming and error prone. Finally, the information which had
to be made public was written by hand for every thesis. Considering that the
information was displayed taking into account different sorting criteria (e.g.
title, author’s name etc.), the information had to be duplicated for each one of
these sorting criteria. DTAP addresses these issues by using the mechanisms
described next.

First of all, it stores all the information regarding the PhD candidates into
a database. Therefore, backing up the entire information implies backing up
the database, which is not a difficult operation when using a database man-
agement system. Moreover, all the data which needs to be made public does
not have to be written by hand anymore. Queries could retrieve the needed
information from the database considering the sorting criteria chosen by the
user. DTAP also includes a tool for generating reports as “.xls” (Microsoft
Excel) files. These are very useful to the employees of IDS, because they must
create annual reports regarding the performance of the University and its staff
(e.g. Supervisor which coordinated most PhD theses in 2012).

Using the data regarding the PhD candidates and a set of templates stored
in the database, the employees of the IDS can generate automatically all the
documents required by the Romanian Ministry of Education (i.e. Adresă
minister, Anunţ susţinere, Decizia rectorului, Listă documente, Proces verbal,
Referat preliminar, Referat final). The procedure of generating the documents
can be split in two steps. The first step is retrieving the required templates
from the database. The second step is to parse the templates, replace variables
from the template with their actual values and format certain parts of the
template accordingly (e.g. bold, italic). The generated document is stored in a
temporary folder until it is downloaded. Immediately after the user downloads
it, the document is removed in order to reduce the memory usage. Due to
lack of space the algorithm and architecture of the system are not presented

BUILDING INTELLIGENT KNOWLEDGE MANAGEMENT SYSTEMS 113

here, but more details can be found in [9, 10]. We would like to emphasize
the improvement obtained from using this system. The total time needed to
generate the documents for a thesis prior to DTAP was 7 * 180 seconds =
1260 seconds, whereas the total time needed to generate the documents using
DTAP is 7 * 3 seconds = 21 seconds. Thus, using DTAP the employees of the
IDS will need only 1.66% of the time they required before to generate all the
documents.

This paper, however, presents the integration of an intelligent plugin in
the KMS. The intelligent agent helps the users of DTAP by offering sugges-
tions regarding the steps that need to be followed when managing a thesis.
Suggestions aim is to prevent human errors which could delay the submission
of the thesis and the PhD students viva respectively.

In section 3 and 4 we will describe other approaches of implementing intel-
ligent systems and how our own approach is different from the existing ones.
Moreover, we will give a short introduction for reinforcement learning, the
method we used for implementing the intelligent plugin in DTAP.

3. Intelligent Knowledge Management Systems

According to John McCarthy Artificial Intelligence is “the science and
engineering of making intelligent machines”. In order for these machines to
fulfill their task, they have to interact with the surrounding environment.
Learning from the interaction with the environment underlies all theories of
learning and intelligence [13]. Such intelligent systems are used for developing
adaptive educational systems. In our case, we have used the reinforcement
learning (RL) strategy for implementing an intelligent educational agent.

RL is a class of solutions in which the problem to be solved is defined
in terms of rewards and punishments [6]. An autonomous agent will learn
based on the received rewards and punishments which actions to choose in
order to reach its goal. These rewards and punishments are given by a trainer
depending on the problem to solve. For instance, if the agent wants to learn
how to play a game, the trainer can punish him for losing, reward him for
winning and offer him no payoff for simply playing [8]. The task of the agent
is to learn the most optimal strategy for reaching its goal.

Single agents or multi agent implementations using RL have been used for
implementing various educational systems [3]. The difference between these
two types of systems is the fact that in a single agent system the learning
process is influenced only by the interaction with the environment, while in the
multi agent system the learning process is influenced by all the other agents
present in the system as well. There are multiple examples of educational

114 OVIDIU PÂRVU AND SANDA M. DRAGOŞ

systems which use RL in order to dynamically adapt their behavior to the
changes of the environment.

Among these we would first like to mention the educational system RLATES [7].
In this case the pedagogical policy applied to one student is improved based on
the experience of other students with similar characteristics. The experiments
show that the system learns through a trial and error technique at the same
time the students learn. One of the benefits of using RL is that it eliminates
the problem of overtraining encountered at supervised learning.

On the other hand, Cordillera [5] implements a different learning strategy.
Cordillera uses a method of RL which improves the efficiency of the system by
inducing which policies should be used for the students. The system starts with
a set of policies denoted as exploratory corpus. This exploratory corpus was
collected while letting the system make random decisions while interacting
with real students. The feedback received from the users determines which
policy is the most appropriate one.

A different approach is presented in [4] where the end purpose of the sys-
tem is to discover efficient/inefficient teaching strategies. The efficient teaching
tactics can be applied by teachers in real classrooms while the inefficient ones
should be avoided. This approach was used in the implementation of Norm-
Gain and InvNormGain [4] which learn what are the best and worst teaching
strategies respectively through their interaction with the students.

The characteristic which all the above described software products share is
the fact that they are directly addressing the needs of teachers and/or students.

4. Navibot

Our own approach is different than the ones presented above. The intelli-
gent agent does not aid the students, but the employees of the IDS. Therefore,
it is still an intelligent educational system, but students are no longer the
main beneficiary. The current version of our implementation is a single agent
system.

We implemented DTAP before designing the intelligent educational agent
called Navibot. In order not to mingle with the source code of the original
system, we chose to implement a plugin which is independent of DTAP and
whose integration in the existing system requires minimal modifications.

The purpose of the plugin is to learn the sequence of actions executed by
an employee of the IDS while managing a PhD thesis. Based on the acquired
information, Navibot will make suggestions regarding the next action that
should be executed considering the current state of the system. For instance,
after inserting a thesis, documents a, b and c must be generated. Then, the
information about the thesis is updated. In the end, documents d, e, f and g

BUILDING INTELLIGENT KNOWLEDGE MANAGEMENT SYSTEMS 115

can be generated as well. Keeping track of all these steps is not a big problem,
but after doing this separately for every thesis every day, one may forget
about generating a particular document or about updating a certain field of
a thesis from time to time. It is in the nature of humans to commit errors,
but preventing errors is always better than having to correct them. Hence,
the purpose of Navibot is to help the users of DTAP manage the PhD theses
without committing errors by pointing them the next step in the process of
managing a thesis.

From the point of view of the user, the plugin is simple to use. The
available use cases are the following:

• Display the window containing the hint.
• Hide the window containing the hint.
• Follow the action suggested by Navibot.

The plugin learns the sequence of actions dynamically while DTAP is being
used. The benefit of this fact is that no supervisor is required to offer training
data to the plugin in order for it to learn. Secondly, the plugin will automati-
cally update its information at runtime when the sequence of actions changes.

As stated before, we used a RL algorithm for implementing the plugin.
Navibot learns the optimal policy, the correct sequence of actions, from the
feedback received for its suggestions.

The first step in designing such a plugin is to establish the set of states.
In our case, the number of states used by the plugin is small, because only the
relevant features of DTAP were considered. This decision was taken having
in mind that this is a web application whose performance is influenced by the
connectivity of the user to the Internet. Therefore, it was very important to
keep the number of computations done by the plugin at a minimum. Other-
wise, it would have affected the performance of DTAP and the plugin would
no longer have been useful.

The set of states contains 10 elements, namely Înregistrare teză (0), Editare
teză (1), Vizualizare teze (2), Generare Adresă minister (3), Generare Anunţ
susţinere (4), Generare Decizia rectorului (5), Generare listă documente (6),
Generare Proces verbal (7), Generare Referat final (8) and Generare Referat
preliminar (9) where the string represents the name of the state and the num-
ber enclosed in parentheses its identifier. We associated to each state a unique
identifier in order to use a simpler notation when referring to them.

The set of actions represents all the possible pages that a user of DTAP
can visit. These actions will be displayed as links on the web pages. Users can
access any of the above mentioned states. Therefore, the set of actions contains
elements of the form “Go to state: si”, where i represents the identifier of the

116 OVIDIU PÂRVU AND SANDA M. DRAGOŞ

state. For instance, one of the actions in the set is “Go to state: s1” which is
equivalent with “Go to page: Editare teză”.

Using the set of states and the set of actions we will define the set of
transitions. There are no restrictions related to the navigation between the
considered pages. Therefore, we can access any page from any other page of
DTAP. Thus, the set of transitions contains all the pairs (si, sj) where si, sj
belong to the set of states. An example of a transition would be (s3, s4) which
can be expressed in natural language as follows. Starting from page “Generare
Adresă minister” (s3) go to page “Generare Anunţ susţinere” (s4).

The learning process of the agent included in the plugin is driven forward
by the received rewards. For each given suggestion which was wrong the
agent receives a negative feedback. Otherwise, it receives a positive feedback.
Therefore, the feedback, known in the literature as reward, can take either one
of the following values:

rk =

{
−0.5, suggestion was wrong
+1.0, suggestion was correct

Simply stated, the agent receives a return with the value “-0.5” for wrong
hints and “+1.0” for correct ones. All the received rewards are cumulated in
the return value “R” which is computed as follows:

Rk =

k∑
i=0

γk−iri

However, the updates are done at every step in order to reduce the space
complexity of the plugin. Thus, the return value is updated at every step
using the recurrence formula:

Rk = rk + γRk−1

Experiments have shown that the plugin learns quicker when the value of γ is
0.9.

As the number of states is small our decision was to use the state-action
value function. Therefore, the return value for each state-action pair (s, a)
is stored. This information is stored in a matrix of dimensions N x N called
actions matrix, where N represents the number of states. At the beginning of
the algorithm every element of the matrix is initialized with the value 1, thus
obtaining a matrix of 10 by 10 having all elements = 1.

In order to read the return of choosing the action starting from state 2 and
which goes into state 4, the value of the cell with coordinates (3, 5) is read.
Generally, in order to check which is the return of choosing the action starting
from state i and which goes into state j, one must read the value of the cell

BUILDING INTELLIGENT KNOWLEDGE MANAGEMENT SYSTEMS 117

with the coordinates (i+1, j+1). One of the benefits of this implementation
is the access to the return values in O(1).

All the concepts presented above are implemented in the Navibot plugin.
The class diagram of the plugin is presented in figure 1. In order to be able
to reuse this structure for all plugins using a RL algorithm, the Reinforce-
mentLearning, State and Action classes are abstract ones.

Figure 1. Navibot class diagram

The only public method defined in the ReinforcementLearning class is the
method “run”. This method describes the general behavior of a RL algorithm
independent of the representation of the State and Action classes. The classes
which are used for actually running the plugin are inheriting the abstract
classes and overriding all abstract methods. In our case, these classes are
EducationalAgent, EducationalState and EducationalAction.

The general public method “run” from the abstract class ReinforcementLearn-
ing is presented in the following using the Pseudocode notation. This method
is called every time the user requests a new page. However, in order not to
delay the delivery of the requested page to the user, the run method is called in
an asynchronous manner using AJAX. As soon as the execution of the method
“run” ends, the results are returned and the hint is displayed.

118 OVIDIU PÂRVU AND SANDA M. DRAGOŞ

Algorithm 1 Public method run

1: get the current state of the application
2: if actionsMatrix is initialized then
3: get value of reward
4: update corresponding return
5: choose the next state for the hint considering the maximum return
6: else
7: construct actionsMatrix
8: initialize next state
9: end if

10: display next state as hint

An execution of the method “run” will be described in the following. The
description is given from an algorithmic point of view which means we will
refer to states and not to pages.

Let us assume that the user wants to visit state 1. Therefore, the current
state will be set to 1 (line 1).

If the action matrix is initialized, then the value of the reward is computed
(line 3). The reward is “-0.5” if the previous suggested state is different from
the current state or “+1.0” if they are equal. The return value corresponding
to the previous suggestion is updated (line 4) using the value of the reward.
Afterwards, the next state has to be determined (line 5). This is done by
accessing the row corresponding to state 1 from the actions matrix. According
to the explanations given above, this is row 2. Each column from the matrix
corresponds to one state and has 1 value in the selected row. The algorithm
finds the column containing the maximum value from the row. The state
corresponding to this column is chosen as the next state.

On the other hand, if the action matrix is uninitialized, then it is con-
structed (line 7) and the value of all the cells is set to 1. The next state is
initialized with a NULL value (line 8).

In the end, the hint is displayed (line 10). If the next state is different
from NULL, then this state is recommended to the user. Otherwise, the
hint will display a message which states that the plugin is currently being
initialized.

Next, we will present some results obtained using the Navibot plugin. In
figure 2 we describe the number of requests needed to learn sequences of actions
of variable length. We mention that the number of requests depends also on
which are the considered states.

We considered the number of requests as a unit of measure, because this
is the most appropriate quantifier when working with web applications. We

BUILDING INTELLIGENT KNOWLEDGE MANAGEMENT SYSTEMS 119

also provide an estimate related to the time needed to learn the optimal policy
assuming that a user makes an average of 6 requests/minute.

Our estimate is that the maximum time needed for learning a sequence,
independent of its length, is less than 20 minutes. However, the sequence of
actions changes only in exceptional cases, which means that once learned, the
optimal policy will rarely change.

Figure 2. Navibot learning time

The schedule of the employees of the IDS assumes working 8 hours/day.
Furthermore, the probability of committing errors at the beginning of the
day is almost nonexistent, but it rises as the number of hours spent at work
increases. Therefore, towards the end of the day when users need the help
of Navibot most, the optimal policy will be learnt and accurate hints will be
provided.

5. Conclusions and future work

We would like to emphasize the benefits of implementing the intelligent
knowledge management system DTAP.

120 OVIDIU PÂRVU AND SANDA M. DRAGOŞ

First of all, DTAP is an educational intelligent software system whose end
users are the people working in administration and not the students or teach-
ers. Its behaviour is changing dynamically based on its interaction with the
users. The accuracy of the suggestions offered by the system increases through-
out the learning process leading to good suggestions in less than 20 minutes.
This guarantees that the number of encountered errors will be reduced after
a relative short period of time.

The intelligent educational agent Navibot helps the users keep track of
their progress when managing a thesis. Moreover, it prevents them from for-
getting to make necessary updates or generate all the documents for a thesis.

A future version of Navibot will replace the single-agent system with a
multi-agent equivalent. In order to achieve this, the present version of the
plugin needs to be modified, such that all interactions of the users with the
system are taken into consideration during the learning process. Results of an
agent need to be persisted as a shared resource which can be accessed by all
the other agents in the system. Therefore, we could no longer use a matrix
for storing the rewards, but use a database instead.

We consider that our system should represent only the initial brick of a
larger construction. The same principles which were incorporated into DTAP
can be used for maintaining Bachelor and Masters theses. Moreover, the design
of the application is generic such that only small adjustments are required for
adapting it to the requirements of other universities. Therefore, DTAP could
be used for managing the PhD theses in all the universities obeying the rules
of the Romanian educational legislation.

References

[1] M.S. Abdullah, I. Benest, A. Evans, and C. Kimble. Knowledge Modelling Techniques
For Developing Knowledge Management Systems. In Proceedings of the 3rd European
Conference on Knowledge Management, pages 15–25, Dublin, Ireland, 2002.

[2] M. Alavi and D.E. Leidner. Knowledge Management and Knowledge Management Sys-
tems: Conceptual foundations and research issues. MIS Quarterly, 25:107–136, 2001.

[3] B.R. Barricelli, M. Padula, and P.L. Scala. Personalized web browsing experience. In
Proceedings of the 20th ACM conference on Hypertext and hypermedia, HT ’09, pages
345–346, New York, NY, USA, 2009. ACM.

[4] M. Chi, K. VanLehn, and D. Litman. Do micro-level tutorial decisions matter: Applying
reinforcement learning to induce pedagogical tutorial tactics. 2010.

[5] M. Chi, K. Vanlehn, D. Litman, and P. Jordan. Empirically evaluating the application of
reinforcement learning to the induction of effective and adaptive pedagogical strategies.
User Modeling and User-Adapted Interaction, 21(1-2):137–180, April 2011.

[6] A.R. Gavin. Problem Solving With Reinforcement Learning. 1995.
[7] A. Iglesias, P. Martnez, R. Aler, and F. Fernandez. Learning teaching strategies in

an adaptive and intelligent educational system through reinforcement learning. Applied
Intelligence, 31:89–106, 2009. 10.1007/s10489-008-0115-1.

BUILDING INTELLIGENT KNOWLEDGE MANAGEMENT SYSTEMS 121

[8] T.M. Mitchell. Machine Learning. McGraw-Hill, New York, 2 edition, 1997.
[9] O. Pârvu. Intelligent web application for managing the PhD theses in the Babeş-Bolyai

University. Cluj-Napoca, Romania, 2012.
[10] O. Pârvu and S. Dragoş. Interactive and intelligent doctorate theses administration

platform. In Zilele Academice Clujene (ZAC), 2012.
[11] M.J. Rosenberg. E-learning : Strategies for Delivering Knowledge in the Digital Age.

McGraw-Hill Professional, New York, 2001.
[12] D. Stenmark. Information vs. knowledge the role of intranets in knowledge manage-

ment. In Proceedings of the XXXV Annual Hawaii International Conference on Sys-
tem Sciences (HICSS-02), 7-10 January. IEEE, 2002. Exteneded version available from
http://w3.informatik.gu.se/ dixi/.

[13] R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction (Adaptive Com-
putation and Machine Learning). The MIT Press, March 1998.

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, 1
M. Kogălniceanu St., 400084 Cluj-Napoca, Romania

E-mail address: ovidiu.parvu@gmail.com, sanda.dragos@ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LVII, Number 4, 2012

CLUSTERING, TIERED INDEXES AND TERM PROXIMITY

WEIGHTING IN TEXT-BASED RETRIEVAL

IOAN BADARINZA AND ADRIAN STERCA

Abstract. In this paper we present a textual retrieval system based on
clustering and tiered indexes. Our system can be used for exact phrase
matching and also for improved keyword search by employing term prox-
imity weighting in the similarity measure. The document retrieval process
is constructed in an efficient way, so that not all the documents in the
database need to be compared against the searched query.

1. Introduction

Textual-based web search accounts for a large part of the traffic in the In-
ternet nowadays. The majority of the Internet traffic no longer flows through
core routers, but through edge distribution networks like the one of the Google
search engine. Although there are several forms of information retrieval (i.e.
textual information retrieval, sound-based information retrieval, video infor-
mation retrieval etc.) the one that evolved the most is text-based information
retrieval and this is reflected in the commercially web search engines available
today. In this paper we present an information retrieval systems which offers
besides keyword search functionality also exact phrase matching. Our system
uses a similarity measure which favors documents that contain large portions
of consecutive terms from the query, so it can be used in detecting plagiarism
in a scientific paper. If the candidate document does not contain groups of
consecutive terms from the query, the similarity measure defaults to a classi-
cal cosine similarity and the search is a keyword search (not an exact phrase
search). The index structure is based on clustering the saved documents and
regular term-frequency/inverse-document-frequency indexes.

Received by the editors: November 27, 2012.
2010 Mathematics Subject Classification. 68U35, 68M11.
1998 CR Categories and Descriptors. H.3.3 [Information Systems]: Information Stor-

age and Retrieval – Information Search and Retrieval ; H.3.1 [Information Systems]: In-
formation Storage and Retrieval – Content Analysis and Indexing .

Key words and phrases. textual information retrieval, tiered indexes, document clustering,
term proximity.

122

CLUSTERING, TIERED INDEXES AND TERM PROXIMITY WEIGHTING 123

The rest of the paper is structured as follows. In section 2, the general
structure of an IR system is outlined and work related to ours is mentioned.
Then, section 3 presents the first part of our IR system, the inverted index,
followed by section 4 which presents the second part, the retrieval algorithm of
our system. In section 5 we present the results of some preliminary evaluations
of our system and the paper ends with conclusions in section 6.

2. Information retrieval fundamentals and related work

Every information retrieval system is build from two main parts: the index
structure and the retrieval/ranking algorithm. There are several space models
for an IR system [1]: the boolean model, the probabilistic model [2], [3], vector
space model, linguistic model.

Most IR systems extract keywords from the documents after an initial
prefiltering phase (which includes stop words elimination, stemming and lem-
mantization) and build an inverted index. Most IR systems assign to each
keyword t from document d a weight like the following [4]:

tf idft,d = tft,d × idft

where tft,d is the number of occurrences of term t in document d (i.e. term
frequency) and idft is the inverse term frequency (i.e. number of occurrences
of term t in all indexed documents). There are several variants for the term
weight formula, but most of them use in some form the term frequency and
the inverse document frequency.

The ranked retrieval algorithm compares the query given by the user to
all or most documents in the collection and based on some similarity measure
between the query and a document it returns the top k relevant documents. A
very used similarity measure is the cosine similarity used in the vector space
model. For exact phrase matching, a positional index (i.e. an index holding
positions in a document for each term) must be used and the similarity measure
should include some form of term proximity scoring [5], [6], [7].

3. The index structure of the system

Our system represents documents in the vector space model where each
document is viewed as a vector with different document terms and for each
term, the system maintains a regular term-frequency/inverse-document-frequency
weight [1]. More specifically, for each term t, the index structure holds a post-
ings list with an entry for each document from the collection in which t occurs.
Each entry stores the document ID, the term weight in that document and a
list of positions were the term appears in that document. The term weight for

124 IOAN BADARINZA AND ADRIAN STERCA

term t in document d is:

wf idft,d = (1 + log(tft,d))× idft

All documents indexed by the system are grouped in clusters/groups based
on the similarity between their representative vectors and each group has a
leader which is chosen in a random way. When a query is submitted to the
IR system, it first checks with the groups’ leaders and then it continues the
search within the group with the leader most similar to our query. In this way
all other non similar documents are excluded from the search and only the
most relevant ones are considered which decreases the runtime execution of
the query. This cluster pruning heuristic is very useful when new documents
are added to the collection. In an IR system, this is done by a crawler. The
algorithm used for building the index structure of our system is described in
the following lines:

The crawler indexing algorithm:
Input: R = {url1, url2, ..., urln} // crawler’s repository

L = {l1, l2, ..., lm} // the existing leaders of the indexed clusters where
// li is the representation of a document in the
// vector space model

For all r ∈ R do
d ← getHtml(r);
d ← filter(d);
init v; // v is the representation of document d in vector space model
for all t ∈ d do //for each term t from document d

v[t] = wf idft,d;
end for;
init Sim;
for all l ∈ L do

Sim(l) ← Similarity(v,l); // computing similarity between
// document d and cluster leader l

end for;
l’ ← MAX(Sim);
insert d in CLUSTER(l’);

end for;

The cluster based crawler first takes from the repository an url and gets the
html source code of that page. The next step is text formatting, deleting the
html tags, stop words elimination (e.g. and, or etc.), deleting javascript and

CLUSTERING, TIERED INDEXES AND TERM PROXIMITY WEIGHTING 125

css code etc. The following step is index creation based on the term weight
wf idft,d for all the terms that appear in the document. In order to find the
most appropriate cluster to which this document should be added, the most
similar cluster leader from the collection is found and the new document is
added to the cluster of this leader. When measuring the similarity between
the vectors v and l, the representations of the document d and a cluster leader,
the classical cosine similarity metric is used:

Similarity(v, l) =
v ◦ l
∥v∥ · ∥l∥

where the numerator is the dot product of vectors v and l and ∥.∥ symbolizes
the Euclidean norm.

4. The retrieval algorithm of the system

Our information retrieval system uses a combination of clustering and
tiered indexes for document searches. When using tiered indexes we set a
similarity threshold at a higher value when we search for a document at the
first tier and decrease that value at tier two and so on until we find the
desired number of documents. This means that the user can search for a whole
document and the system will return the most similar indexed documents.

Because of our similarity metric, the retrieval algorithm of our system is a
combination between exact phrase retrieval and keyword based retrieval. This
means that although the search is essentially a keyword search based on cosine
similarity between vectors containing term weights, the vector representation
of the query and the vector representation of a candidate document, documents
that contain large groups of consecutive terms from the query are favored when
returning the results (thus, considered more relevant than documents that do
not contain groups of consecutive terms from the query).

The retrieval algorithm returns the top k documents most similar to our
query (off course, the query is represented in vector space, in order to be com-
pared to other documents) from the document collection. The algorithm is
the following:

The document retrieval algorithm:
Input: L = {l1, l2, ..., lm} // the leaders of indexed clusters where li is the

// vector representation in the vector space model
q // q is the vector representation of the query

Score ← [];
init minimum threshold;
init similarity threshold;

126 IOAN BADARINZA AND ADRIAN STERCA

index ← 0;
while (index ≤ k) or (similarity threshold > minimum threshold) do

L’ ← first three similar leaders(q, L, similarity threshold);
L ← L - L’;
for all l ∈ L′ do

for all d′ ∈ CLUSTER(l) do
if (similar(q,d’) ≥ similarity threshold)

Score[d’] ← similar(q, d’);
index ← index +1;

end if;
end for;

end for;
similarity threshold ← similarity threshold - 1;

end while;
for all d’ in Score[] do

Score[d’] ← Score[d’] + title metadata url score(d’);
end for;
Sort(Score);
return Score

The first step is the search of the most similar leaders from the clusters,
which add some speed to the algorithm because the document is compared
only to the leaders and not to all documents from the collection. After getting
the first three most similar clusters, the document is searched in these leaders’
clusters. The function that is used for similarity computation between the
vector representations of 2 documents, d1 and d2, is a modified cosine similarity
function that takes into account matching groups of consecutive words:

(1) similar(d1, d2) =
d1 ◦ d2
∥d1∥ · ∥d2∥

+

(
1− 1

Nd1,d2

)
where the denominator represents the dot product between vectors d1 and
d2, ∥.∥ represents the Euclidean norm of a vector and Nd1,d2 is the length (in
terms) of the largest group of consecutive terms that occurs both in d1 and
d2. Two documents that have a large group of consecutive terms occurring
in both will have a value close to 1 for the second part of the similar(d1, d2)
formula. If documents d1 and d2 have no terms in common or if they have
terms in common, but no groups of consecutive terms in common, Nd1,d2 is
set to 1 and the formula similar(d1, d2) defaults to a classical cosine similarity
metric. So the two documents, d1 and d2, are more similar when the value of
the similar() function is higher and less similar when its value is lower. Please
note that the formula (1) is not a metric in the mathematical sense since it

CLUSTERING, TIERED INDEXES AND TERM PROXIMITY WEIGHTING 127

does not satisfy the triangle inequality property, but it is a semimetric. The
values of the semimetric (1) will be between 0.0 and 2.0. The reason that the
semimetric contains the Nd1,d2 term is to implement a flexible form of exact
phrase matching.

After the first leaders most similar to the query were found, the next step
takes place which contains the actual extraction of the k-th most relevant
documents that have a similarity value at least as higher as the threshold.
The relevant documents that would be returned to the user are searched in
the clusters of the selected leaders. The extraction of the first k documents is
based on tiered indexes and the following heuristics were used:

• In the first tier, the document will be searched in the first 3 most
similar leaders’ clusters and the extracted documents must be at least
50% similar with the searched document;
• If the number of returned documents after the first tier is lower than
k, than the search goes to tier 2 where the similarity threshold is set
to 40%;
• If after tier 2 the number of returned documents is lower than k than
it goes to tier 3 where the similarity threshold is set to 20%;
• If the tier 3 search is done and there still aren’t k returned documents,
than the found documents are returned.

The last step in the algorithm is the rank and score computation for the
extracted documents. For score computation, the following factors are taken in
consideration: similarity percentage calculated with the formula (1), the words
from documents title, key words from meta tags and the words from the url
as follows: the score increases with 1 if words from the query are found in the
meta data, with 2 if words from the query are found in the document’s title and
with 2 if words from the query are found in the document’s url. Considering
the score computation, we can say that this algorithm has support for web
pages that were optimized for searched engines.

5. Evaluation

In order to evaluate our text retrieval system we performed initial tests
on a rather small document collection consisting of 100 documents, most of
them crawled and indexed from the wikipedia.org website. The tests showed
that our systems retrieves relevant documents to a large degree of the returned
results. We detail in the following lines the results of two tests. In the first
test we used a long query of about 70 terms and in the second query we used
a smaller query of about 20 terms. Let this query be referred to by Q in both
tests. In order to test the efficiency of our modified cosine similarity measure,
7 documents from our 100 documents collection were artificially created:

128 IOAN BADARINZA AND ADRIAN STERCA

• Document D1 contains just the query, Q
• Document D2 contains the query Q, repeated 3 times
• Document D3 contains query Q, then some random text, then another
occurrence of Q, then other random text
• Document D4 contains half of Q, followed by some random text, then
the other half of Q, followed by another random text
• Document D5 contains a large portion of random text followed by Q
and followed by another random text
• Document D6 containing some text which resembles Q, but is not the
text from Q
• Document D7 which contains the first third of Q followed by some
random text, then the second third of Q, then followed by another
random text, then the final third of Q and some random text

For both tests, we set the parameter k of the retrieval algorithm to 10.
When the longer query was given to the system, the system retrieved the fol-
lowing documents in the specified order and with the specified similarity score:

Document Similarity score
D1 1.99
D2 1.98
D3 1.63
D4 1.44
D5 1.39
D7 1.32

Da (irrelevant) 0.0304
Db (irrelevant) 0.0293
Dc (irrelevant) 0.0265
Dd (irrelevant) 0.0248
Precision = 6/10 = 0.6
Recall = 6/6 = 1.0

The retrieved documents for the short query of about 20 terms are:

CLUSTERING, TIERED INDEXES AND TERM PROXIMITY WEIGHTING 129

Document Similarity score
D1 1.89
D2 1.88
D3 1.53
D5 1.46
D4 1.35
D7 1.23

D6 (irrelevant) 0.26
Da (irrelevant) 0.035
Db (irrelevant) 0.028
Dc (irrelevant) 0.026
Precision = 6/10 = 0.6
Recall = 6/6 = 1.0

We can see from both tables that the relevant documents were returned,
the documents containing large portion of Q have higher similarity score and
there is a significant distance between the similarity score for relevant docu-
ments and the similarity score for irrelevant documents.

6. Conclusions and future work

In this paper we have presented an information retrieval system based
on clusters and tiered indexes that combines exact phrase search with (non-
phrase) keyword based search. The system should scale well with a large
document collection because it uses clustering in the retrieval process. Initial
tests on a rather small sized document collection show that the precision and
recall measures of our system have reasonable good values. Of course, in order
to assess the full efficiency of such a retrieval system, we need to test it on large
collections of documents like the Ad hoc track from the TREC collections [8].

7. Acknowledgments

This work was partially supported by the CNCSIS-UEFISCSU unit of the
Romanian Government, through project PN II-RU 444/2010.

References

[1] Manning C.D., Raghavan P., Schutze H, An introduction to Information Retrieval, Cam-
bridge University Press, 2009.

[2] Crestani F., Lalmas M., Van Rijsbergen C. J., Campbell I., Is this document relevant? ...
probably: A survey of probabilistic models in information retrieval, in ACM Computing
Surveys, vol 30, no.4, pp.528552, 1998.

[3] Fuhr N., Probabilistic models in information retrieval, in The Computer Journal, vol. 35,
no.3, pp. 243255, 1992.

130 IOAN BADARINZA AND ADRIAN STERCA

[4] Papineni K., Why inverse document frequency?, In Proc. North American Chapter of the
Association for Computational Linguistics, pp. 18, 2001.

[5] Sadakane K., Imai H., Text retrieval by using k-word proximity search, in International
Symposium on Database Applications in Non-Traditional Environments, pp.183-188,
1999.

[6] Buttcher S., Clarke C. L. A., Lushman B., Term proximity scoring for ad-hoc retrieval on
very large text collections, in Proceedings of the 29th annual international ACM SIGIR
conference on Research and development in IR, pp. 621622, 2006.

[7] Rasolofo Y., Savoy J., Term proximity scoring for keyword-based retrieval systems, in
Proceedings of the 25th European Conference on IR Research, pp. 207218, 2003.

[8] The Text Retrieval Conference, http://trec.nist.gov .

Babeş-Bolyai University, Department of Computer Science, 1 M. Kogălniceanu
St., 400084 Cluj-Napoca, Romania

E-mail address: ionutb@cs.ubbcluj.ro, forest@cs.ubbcluj.ro

	0_cover1
	00Contents_1_2
	01Mouhoub&Akrouf_3_18
	02Mihalyi_etall_19_29
	03Niculescu_etall_30_38
	04Neagos&Motogna_39_54
	05Lupea&Tatar_55_62
	06Bocicor_63_74
	07Tambulea_etall_75_84
	08Cojocar_85_96
	09Diosan&Rogozan_97_109
	10Parvu&Dragos_110_121
	11Badarinza&Sterca_122_130

