
INFORMATICA
1/2021

STUDIA
UNIVERSITATIS BABEŞ-BOLYAI

INFORMATICA

No. 1/2021
January - June

EDITORIAL BOARD

EDITOR-IN-CHIEF:

Prof. Horia F. Pop, Babeş-Bolyai University, Cluj-Napoca, Romania

EXECUTIVE EDITOR:

Prof. Gabriela Czibula, Babeș-Bolyai University, Cluj-Napoca, Romania

EDITORIAL BOARD:

Prof. Osei Adjei, University of Luton, Great Britain
Prof. Anca Andreica, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Florian M. Boian, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Sergiu Cataranciuc, State University of Moldova, Chișinău, Moldova
Prof. Wei Ngan Chin, School of Computing, National University of Singapore
Prof. Laura Dioșan, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Farshad Fotouhi, Wayne State University, Detroit, United States
Prof. Zoltán Horváth, Eötvös Loránd University, Budapest, Hungary
Assoc. Prof. Simona Motogna, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Roberto Paiano, University of Lecce, Italy
Prof. Bazil Pârv, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Abdel-Badeeh M. Salem, Ain Shams University, Cairo, Egypt
Assoc. Prof. Vasile Marian Scuturici, INSA de Lyon, France

YEAR ... VOLUME 66 (LXVI) 2021

MONTH JUNE

ISSUE 1

S T U D I A

UNIVERSITATIS BABEȘ-BOLYAI

INFORMATICA

1

EDITORIAL OFFICE: M. Kogălniceanu 1 • 400084 Cluj-Napoca • Tel: 0264.405300

SUMAR – CONTENTS – SOMMAIRE

T.-V. Pricope, An Analysis on Very Deep Convolutional Neural Networks: Problems and

Solutions .. 5

C.-F. Andor, Performance Benchmarking for NoSQL Database Management Systems ... 23

P. Lipták, A. Kiss, Constructing Unrooted Phylogenetic Trees with Reinforcement

Learning .. 37

E.-M. Manole, Detecting the Most Important Classes from Software Systems with Self

Organizing Maps .. 54

M.D. Tóth, A. Kiss, Retinal Blood Vessel Segmentation on Style-augmented Images 74

F. Bota, Temporal Discounting for Multidimensional Economic Agents 86

M. Petrescu, Leader Election in a Cluster using Zookeeper .. 104

M. Mureșan, BibTeX for the Romanian Language ... 116

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXVI, Number 1, 2021
DOI: 10.24193/subbi.2021.1.01

AN ANALYSIS ON VERY DEEP CONVOLUTIONAL

NEURAL NETWORKS: PROBLEMS AND SOLUTIONS

TIDOR-VLAD PRICOPE

Abstract. Neural Networks have become a powerful tool in computer
vision because of the recent breakthroughs in computation time and model
architecture. Very deep models allow for better deciphering of the hidden
patterns in the data; however, training them successfully is not a trivial
problem, because of the notorious vanishing/exploding gradient problem.
We illustrate this problem on VGG models, with 8 and 38 hidden layers, on
the CIFAR100 image dataset, where we visualize how the gradients evolve
during training. We explore known solutions to this problem like Batch
Normalization (BatchNorm) or Residual Networks (ResNets), explaining
the theory behind them. Our experiments show that the deeper model
suffers from the vanishing gradient problem, but BatchNorm and ResNets
do solve it. The employed solutions slighly improve the performance of
shallower models as well, yet, the fixed deeper models outperform them.

1. Introduction

We have witnessed a lot of breakthroughs in deep learning lately [15] and
all of them had a certain thing in common: very large and deep neural net-
works. The network depth has played probably the most important role in
these successes, just over a span of a few years, the top-5 image classification
accuracy over the ImageNet dataset has increased from 84% [12] to 95% [20],
[16] using deeper networks with rather small receptive fields [2]. There seems
to be a general rule that deeper is better and other results in this area have
also underscored the superiority of deeper networks [25] in terms of accuracy
and/or performance.

However, to achieve the advancements we have today, challenging problems
had to be solved. There is a fundamental problem that very deep CNNs
(Convolutional Neural Networks) suffer from. It was showed [10] that training

Received by the editors: 26 January 2021.
2010 Mathematics Subject Classification. 68T45 .
1998 CR Categories and Descriptors. I.2.1 [Artificial Intelligence]: Learning – Connec-
tionism and neural nets.
Key words and phrases. Deep Learning, Neural Network, Image Classification, Deep Convo-
lutional Neural Network, Vanishing Gradient Problem, VGG.

5

6 TIDOR-VLAD PRICOPE

becomes more difficult as we increase the number of layers of a NN (Neural
Network), stacking many non-linear transformations typically results in poor
propagation of activations and gradients [19]. This is caused by the well-
known problem of vanishing/exploding gradients [7]. With a big model,
as the gradient is back-propagated to earlier layers, repeated multiplication
may make the gradient infinitively small (or infinitely large) and a meaningful
signal won’t reach the input layers causing the network not to learn anything
even after the first iterations.

In this paper, we are going to visualize and explore this problem, analyze
and test proposed solutions like BatchNorm [10], Resnets [6] and DenseNets
[9]. We experiment on VGG (Visual Geometry Group) architectures [16] which
are based on convolutional layers and are still an inspiration for top models
these days. The motivation behind this work is the fact that current and
previous state-of-the-art technology in computer Vision AI does heavily rely
on a very deep convolutional architecture. Therefore, it is important to know
how to detect problems and how to successfully fix them when using
such tools. We will confirm one of the statements that were thought about the
VGG networks - going deeper without any change whatsoever is unacceptable,
visualizing the gradients during training. We propose some intuition and a
mathematical underpinning of the problem that causes this phenomenon and
explore solutions.

Our main contribution is a throughout evaluation of VGG networks of in-
creasing depth using different stabilization techniques on the CIFAR100 image
dataset [11]. We show that a plain (traditional) VGG network with 7 convo-
lutional layers outperforms a much deeper network that uses 37 convolutions
on a same setup. We prove that this is caused by the vanishing gradient prob-
lem (analyzing the gradients with respect to the model parameters) and we
fix it using BatchNorm and Resnets showing that deeper is better if proper
techniques are used to stabilize the learning of such models.

For the purpose of this research, we have used one of the most powerful
GPU machines openely available to public as of today: the Nvidia Tesla V100,
which allowed for 60% decrease in training time compared to other solid GPU
workstations like Tesla T4 or K80.

2. Identifying problems of a deep CNN

As a baseline model we have a VGG network with 7 convolutional layers and
1 flatten layer. After training for 100 epochs, this model gets a train accuracy
of around 54% and a test accuracy of 49%. The learning stage of this model
is healthy enough, the accuracy does not decrease after a certain point and
the generalization gap analyzing the loss is not that big. The gradient flow -

VERY DEEP CONVOLUTIONAL NEURAL NETWORKS: PROBLEMS & SOLUTIONS 7

mean absolute value of gradients with respect to the model parameters can be
seen in Figure 1. However, these are not satisfactory results, good models on
this dataset achieve consistently over 70% accuracy [9].

Figure 1. Gradient Flow in each layer for the healthy VGG 08 network.

Therefore, we tried repeating convolutional blocks over and over until we
ended up with a VGG neural network with 37 convolutional layers and 1 flatten
layer. Unsurprisingly, training this network, in its current form, did not yield
great results, the test and train accuracy remained steady at 1% during the
whole training stage and the loss did not decrease almost at all. It seems
that the more shallow architecture beat the deeper one in this experiment. In
1989, Cybenko proved [3] that a network with a large enough single hidden
layer of sigmoid units can approximate any decision boundary. Empirical
work, however, suggests that it can be difficult to train shallow nets to be
as accurate as deep nets. Moreover, for vision tasks, multiple studies suggest
that deeper models are preferred under a parameter budget [4], [19], [16].

So why is it not the case that we get better performance with higher number
of hidden units?

8 TIDOR-VLAD PRICOPE

.in
pu

t_
co

nv
..c

on
v_

0
.in

pu
t_

co
nv

..b
n_

0
.b

lo
ck

_0
_0

..c
on

v_
0

.b
lo

ck
_0

_0
..c

on
v_

1
.b

lo
ck

_0
_1

..c
on

v_
0

.b
lo

ck
_0

_1
..c

on
v_

1
.b

lo
ck

_0
_2

..c
on

v_
0

.b
lo

ck
_0

_2
..c

on
v_

1
.b

lo
ck

_0
_3

..c
on

v_
0

.b
lo

ck
_0

_3
..c

on
v_

1
.b

lo
ck

_0
_4

..c
on

v_
0

.b
lo

ck
_0

_4
..c

on
v_

1
.re

du
ct

_b
lo

ck
_0

..c
on

v_
0

.re
du

ct
_b

lo
ck

_0
..c

on
v_

1
.b

lo
ck

_1
_0

..c
on

v_
0

.b
lo

ck
_1

_0
..c

on
v_

1
.b

lo
ck

_1
_1

..c
on

v_
0

.b
lo

ck
_1

_1
..c

on
v_

1
.b

lo
ck

_1
_2

..c
on

v_
0

.b
lo

ck
_1

_2
..c

on
v_

1
.b

lo
ck

_1
_3

..c
on

v_
0

.b
lo

ck
_1

_3
..c

on
v_

1
.b

lo
ck

_1
_4

..c
on

v_
0

.b
lo

ck
_1

_4
..c

on
v_

1
.re

du
ct

_b
lo

ck
_1

..c
on

v_
0

.re
du

ct
_b

lo
ck

_1
..c

on
v_

1
.b

lo
ck

_2
_0

..c
on

v_
0

.b
lo

ck
_2

_0
..c

on
v_

1
.b

lo
ck

_2
_1

..c
on

v_
0

.b
lo

ck
_2

_1
..c

on
v_

1
.b

lo
ck

_2
_2

..c
on

v_
0

.b
lo

ck
_2

_2
..c

on
v_

1
.b

lo
ck

_2
_3

..c
on

v_
0

.b
lo

ck
_2

_3
..c

on
v_

1
.b

lo
ck

_2
_4

..c
on

v_
0

.b
lo

ck
_2

_4
..c

on
v_

1
.re

du
ct

_b
lo

ck
_2

..c
on

v_
0

.re
du

ct
_b

lo
ck

_2
..c

on
v_

1
lo

gi
t_

lin
ea

r_
la

ye
r

Layers

0.00000

0.00005

0.00010

0.00015

0.00020

Av
er

ag
e

Gr
ad

ie
nt

Gradient flow

Figure 2. Gradients vanishing when training a VGG model
with 37 convolutional layers (VGG 38 network). Simply stack-
ing layers does not work.

Well, increasing network depth does not work by simply stacking layers
together. Very deep networks are hard to train because of the vanishing gra-
dient problem (Figure 2). An intuition for that happening is that, when the
network is too deep, the gradients from where the loss function is calculated
easily shrink to zero after several applications of the chain rule, so gradients
aren’t really back-propagated sufficiently to the initial layers of the network.
This can be clearly seen in the Figure 2 that shows the mean absolute value
of the gradients at each epoch. The gradients quickly turn very close to 0 after
just 2 layers during backpropagation from output layer to input layer.

This is just an intuition, but neural networks haven’t been regarded as un-
interpretable black-boxes for no reason, can we somehow explain this phenom-
enon mathematically?

In a way, yes. In very deep architectures, the variance of the data changes at
each activation and the idea that earlier layers influence later layers in complex

VERY DEEP CONVOLUTIONAL NEURAL NETWORKS: PROBLEMS & SOLUTIONS 9

ways is not new. The problem is to understand why and how these high order
interactions between layers are an issue for learning.

Suppose that we are minimizing a loss function f(w) using gradient de-
scent, where w are the weights. We consider what happens when we take
a step in the direction of the gradients from the current weights w0 . Of
course, we don’t know the form of function f yet, however, recall the Weier-
strass Approximation Theorem in Rn which states that every real-valued
continuous function in a closed n dimensional subspace can be uniformly ap-
proximated as closely as desired by a polynomial function. Note that this
does not contradict our context here, as it is generally assumed NNs do pro-
vide differentiable, well-behaved functions (as gradients are backpropagated
through the layers), so it is a reasonable assumption to consider f contin-
uous (as a consequence). To approximate f , usually a second order Tay-
lor polynomial expansion is taken (around the current weights w0): f(w) ≈
f(w0) + (w−w0)

T g+ 1
2(w−w0)

TH(w−w0) where g and H are the gradient
and Hessian matrix of f(w) at w0 . When we take a step in the direction of
the gradient with size ε , the loss function becomes :

f(w0 − εg) ≈ f(w0)− εgT g + 1
2ε

2gTHg (∗)

This is actually a well known formula in convex optimization as it was used
in old papers that were not even Deep Learning related [21]. Notice the third
term on the right-hand side of the equation: 1

2ε
2gTHg. If this term was 0, the

loss function would strictly decrease. This happens when the model has no
second-order terms - i.e. when it is a strictly linear model. On the other hand,
if this term was sufficiently large, it may exceed the absolute value of εgT g
so the loss might actually increase. This happens when the second-order
effects outweigh the first-order effects. It is regarded that the last term (the
one that contains the Hessian and the gradient) represents the effect of the
curvature of the loss function [14]. If the curvature is small, the gradient
is mostly constant, meaning we can take a large step-size ε and decrease
the loss. On the other hand, when the curvature is large, the gradient changes
quickly, meaning a large step-size poses a risk of increasing the loss. In the
worst case, the gradient is the eigenvector of H with the largest eigenvalue.

The mathematical background presented above was needed as solutions to
the vanishing gradient problem do refer to this problem of conditioning, to
be more precise, the ill-conditioning of the Hessian matrix. The only way to
ensure that the curvature does not cause the loss to increase is by decreasing
the step-size ε -making it extremely small. Using a very small learning rate
(lr) with VGG 38 is just not practical, though. Of course, we analyzed what
happens only for second-order effects, but this gives tremendous insight into
the behavior of deeper neural networks. We are confident that this translates

10 TIDOR-VLAD PRICOPE

to higher order effects caused by very deep NN architectures, that need higher
order Taylor series for a good approximation, where there are third, fourth,
and even higher-degree effects between the weights. This means that gradient
updates can be even more unpredictable because the higher order interactions
complicate the gradient update, and the only way to ensure that these effects
do not adversely affect the loss is to make the step-size extremely small, or to
incorporate techniques that allow higher learning rates to be used.

3. Background Literature

3.1. Batch Normalization.

Batch normalization (BN) [10] is a technique to normalize activations in
intermediate layers of deep neural networks. BN has become a staple in state-
of-the-art models because of its tendency to speed up training and improve
performance. The main idea is to normalize the output of a previous activa-
tion layer by subtracting the batch mean and dividing by the batch standard
deviation. It is empirically proved that this solves the vanishing gradient
problem in very deep CNNs possibly due to more controlled activations and
well-behaved gradient updates.

To our understanding, the motivation comes from the fact that we always
knew input normalization is needed for a healthy learning; if the input layer
is benefiting from it, why not do the same for the values in the hidden layers,
as the distribution of each layer’s inputs changes all the time during training?
We normalize the input layer by adjusting and scaling the activations. This
way, it reduces the amount by what the hidden unit values shift around.
The authors refer to this phenomenon as internal covariate shift.

However, after this shift/scale of activation outputs by some randomly ini-
tialized parameters, the weights in the next layer are no longer optimal. To
address this problem, the authors introduced, for each activation, a pair
of trainable parameters γ, β, which scale and shift the normalized value:
y = γx + β. BN lets the gradient descent do the denormalization by chang-
ing only these two weights (γ, β) for each activation, instead of losing the
stability of the network by changing all the weights.

It comes as a consequence that BN allows each layer of a network to learn
by itself a little bit more independently of other layers, but, intuitively, why
does that help? Recall formula (∗). With BN, the mean and variance of
the activations of each layer are independent by the values themselves, they
are not decided by complex interactions between multiple layers,
but rather by two simple parameters. This means that the magnitude

VERY DEEP CONVOLUTIONAL NEURAL NETWORKS: PROBLEMS & SOLUTIONS 11

of the higher order interactions are likely to be suppressed, allowing
larger learning rates to be used.

Among other advantages of BN, it helps bypass local minima and makes
the training more resilient to weights initialization and the authors show that
it is invariant to parameter scale. It is a form of regularization, the networks
with BN usually do not require Dropout [17]. BN also enabled the training of
deep neural networks with sigmoid activations that were previously deemed
too difficult to train due to the vanishing gradient problem.

Nevertheless, as any method in machine learning, there are some limi-
tations. Convergence is necessary for generalizing well, but if a network
converges without normalization, BN does not add further improvement in
generalization [1]. It was also showed that BN strongly depends on how the
batches are constructed during training, and it may not converge to a desired
solution if the statistics on the batch are not close to the statistics over the
whole dataset. Moreover, it was shown [13] that BN fails/overfits when the
mini-batch size is 1 and are in general, very sensitive to the mini-batch size.

3.2. Residual Neural Networks.

Residual Neural Networks (Resnets) [6] are a family of neural networks
with a specific common trait: they use skip connections in their architecture
to fit the input from the previous layer to the next layer without any modifi-
cation of the input. Resnets solve the vanishing gradient problem by letting
the gradients flow directly through the skip connections backwards from later
layers to initial filters. Other problems that these NNs solve is the shattered
gradients problem in which we get gradients that are not correlated within
samples in any way.

The motivation behind the authors’ work is the fact that adding multiple
layers to an already defined NN architecture shouldn’t come at any perfor-
mance cost if the layers that we add are identity mappings - that don’t do
anything. It should be easy for a NN (which is a good function approximator)
to learn the identity map f(x) = x. The authors also took inspiration from
other sources as Resnet was not the first one to use skip connections. LSTMs
[8] have a similar mechanism with their parametrized forget gate that controls
how much information will flow to the next time step and there is also High-
way Networks [18] which actually contain Resnets in their solution space
and yet they perform no better than them.

It is said that the problem of training very deep CNN models has largely
been overcome via carefully constructed initializations and BN, however, archi-
tectures incorporating skip-connections such as highway and resnets perform
much better than standard feedforward architectures despite BN. But why

12 TIDOR-VLAD PRICOPE

wasn’t BN enough to train very deep models, what is it that these
deep residual models do better? In short, when training deep networks
there comes a point where an increase in depth causes accuracy to saturate,
then degrade rapidly - the degradation problem caused by shattered gra-
dients. Shattered gradients resemble white noise and cancel each other out,
making training more difficult. Shallow networks have unshattered gradients.
However, for deeper networks, training them with batch norm leads to shat-
tered gradients, while training them without it leads to the vanishing gradient
problem. ResNets help ameliorate both problems, one of the arguments is
that they resemble an ensemble of shallow networks.

The authors tested a 152-layered NN for ImageNet classification. It is really
impressive that this was 8x bigger than VGG nets, but it does require less
computation according to the no of Flops.

Limitations of the Resnet concern a mathematical underpinning of the
empirical research. Moreover, a study [22] found out that Resnet and variants
of Resnet extremely vulnerable to adversarial examples (or attacks) [5] , which
are input examples slightly perturbed with an intention to fool the network to
make a wrong classification.

3.3. Densely connected neural networks.

Densely connected neural networks (Densenets) [9] extend on the idea of
shortcut connections present in Resnets, connecting all the layers directly with
each other. In this novel architecture, the input of each layer consists of the
feature maps of all earlier layer, and its output is passed to each subsequent
layer. The feature maps are aggregated with depth-concatenation and not
with summation using identity mappings like Resnets. These connections
form a dense circuit of pathways that allow better gradient-flow, thereby solv-
ing the vanishing gradient problem.

A key insight in this architecture is that each layer has direct access to the
gradients of the loss function and the original input signal, the model requires
fewer layers, as there is no need to learn redundant feature maps, allowing the
collective knowledge to be reused - feature reuse, making the network highly
parameter-efficient. Fewer and narrower layers means that the model has
fewer parameters to learn, making them easier to train. The authors also talk
about the importance of variation in input of layers as a result of concatenated
feature maps, which prevents the model from over-fitting the training data
which makes sense.

The full architecture proposed in the paper makes use of dense blocks and
transition blocks. The dense blocks, as we mentioned before, are composed of
interconnected dense layers (that here are 1x1 conv + 3x3 conv). A term that

VERY DEEP CONVOLUTIONAL NEURAL NETWORKS: PROBLEMS & SOLUTIONS 13

is frequently brought up in the paper is the growth rate k that dictates how
many channel features are concatenated and fed as input to the next dense
layer. Transition blocks are used between dense blocks and use Convs and
average pooling for dimensionality reduction.

Densenet models without hyper-parameter tuning are compared to Resnet
with optimal hyper-parameters over the ImageNet dataset and it turns out
that the Densenet model has a significantly lower validation error than
the ResNet model with the same number of parameters. Moreover, an-
other experiment showed that a Densenet model with 20M parameters model
yields similar validation error as a 101-layer ResNet with more than 40M
parameters.

Therefore, it seems that Densenet is a clear improvement over the pre-
vious state-of-the-art Resnet, granted the two architectures have the main
concept of skipping layers in common, the execution being different. In
relationship with Batch Normalization, both of them do use it which shows
how important this technique still is.

4. Solution Overview

In order to solve the vanishing gradient problem, we have chosen Batch
Normalization as a first-hand solution. The motivation behind this is the
fact that all the solutions from the literature review section had this technique
in common, so it comes as natural to apply it.

Implementing BatchNorm is like applying pre-processing but for hidden
layers. The idea is to normalize the output coming from a previous hidden
layer (likely Conv), restricting the amount by what a hidden unit value can
shift around. An idea that we have brought up in the literature review as well
is the reduction of the internal covariate shift. Covariance shift is directly
linked to the different distributions that can appear in the data: if it changes
between training data (for example, we train the model on greyscale images)
and test data (we test it on RGB images), our algorithm would be, of course,
pretty poor; BN tries to solve that.

The algorithm can be seen below, note the two model parameters introduced
by BN (γ, β) that help the optimizer undo the normalization if it’s a way for it
to minimize the loss function. We add these two trainable parameters to each
layer, so the normalized output (that has 0 mean and 1 standard deviation)
is multiplied by a standard deviation parameter γ and add a mean parameter
β. In practice, restricting the activations of each layer to be strictly 0 mean
and unit variance can limit the expressive power of the network. Therefore, in
practice, batch normalization allows the network to learn parameters γ and β
that can convert the mean and variance to any value that the network desires.

14 TIDOR-VLAD PRICOPE

Algorithm 1 Batch Normalization

Input: Values of X over a mini-batch after a Conv Layer: xi, i ∈ 1, 2, ..., n.
Parameters to be learnt: γ, β.

µ← 1

n

∑n
i xi //mini-batch mean

σ2 ← 1

n

∑n
i (xi − µ)2 //mini-batch variance

x̂i ←
xi − µ√
σ2 + ε

, ∀i ∈ 1, 2, ..., n // normalization

yi ← γx̂i + β,∀i ∈ 1, 2, ..., n // scale and shift
Output: y

It comes as a natural question, though, if we should apply BN before and
after activations. We have researched this issue quite thoroughly and there
is not a clear definite answer to it. Although the proposed approach in the
original paper used BN before activations, many empirical experiments have
been conducted by the community [23] and great results are showed applying
BN after ReLu activations. However, our understanding is that BN helps
more by reducing the high-order realationships between parameters
of different layers than reducing the covariate shift, therefore the
order might not really matter. We will apply BN before activation and
possible pooling layer as described by the authors of the original paper.

It is said that BN also regularizes the model. The intuition for this is
that BN adds extra sources of noise so that every layer has to learn to be
robust to account for the variations in its inputs: because the data points
are randomly chosen to form a minibatch, the standard deviation randomly
fluctuates and BN multiplies each hidden unit by such randomly fluctuating
standard deviations and also subtracts the randomly fluctuating means of the
minibatch data points.

BatchNorm will likely solve the problem, however, to get even more improve-
ment in the performance of the model, we also chose to implement Residual
Blocks.

Implementing Resnet is straight-forward: to construct a skip connection
over a layer that applies transformation F to an input vector x, we modify
the output of the whole block to another map H(x) = F (x) + x.

The idea is that even if there is vanishing gradient for the weight layers,
we always still have the identity x to transfer back to earlier layers. The
weight layers have to learn this kind of residual mapping: F (x) = H(x) − x.
Intuitively, if we bypass the input to the first layer of the model to be the
output of the last layer of the model, the network should be able to predict
whatever function it was learning before with the input added to it.

VERY DEEP CONVOLUTIONAL NEURAL NETWORKS: PROBLEMS & SOLUTIONS 15

However, this does not work if F (x) changes the dimensions of x, so we need
to be careful when implementing it. We have to find a linear projection g =
Wx such that we preserve the features in x but we reduce its dimensionality.
This is addressed in the original paper: if we have to increase the dimensions of
x to match F (x), then padding is recommended as it does not add any more
model parameters and is quite efficient. If we need to reduce it, we can apply
any pooling transformation or, a 1x1 convolution with an appropriate stride
- this is what the authors use in their experiments. We can view the pooling
reduction as a direct scaling without adding extra parameters, however, the
1x1 convolution approach would work better in theory because, intuitively,
this is like a learnt scaling.

5. Experiments

We base our experiments using the CIFAR100 dataset which contains 60k,
32x32 colored natural images. For all our experiments, we train on 100 epochs,
having 47.5k of the images as training data, 2.5k as validation data and the
rest (10k) as test data. Note that at each experiment we shuffle the samples
and apply some basic data augmentation: random crop, horizontal flip and
gaussian noise on all 3 RGB channels having the mean (0.4914, 0.4822, 0.4465)
and the std (0.2023, 0.1994, 0.2010) .

The architectures we are going to use are quite similar at a base level. We
have convolutional processing blocks that are repeated in the network.
Such a block is a cascade of 2 convolutional layers, each followed by a Leaky
ReLu activation function. We also have 1 to 3 reduction blocks that are
used to downgrade the units in terms of width and height through pooling.
Each such block is a cascade of 2 convolutional layers with an average pooling
layer in the middle. All these consecutive blocks and with a flatten and a
softmax layer. Denote VGG 08 being such a NN with 7 convolutional layers
+ 1 flatten layer and VGG 38 a NN with 37 convolutional layers + 1 flatten
layer.

The motivation behind using leaky ReLu is that it’s more unlikely to suf-
fer from vanishing gradients than other non-linear activation functions (sig-
moid/tanh). Plus, we use the leaky version because we want to better account
for the negative values that come through the layers. Average pooling was used
in image classification by previous state-of-the-art models like Densenets. By
default, we use Adam with lr=0.001 and a batch-size of 100.

The first experiment is to test the effectiveness of BatchNorm to solve
the vanishing gradient problem. To do that, we have applied BN directly
after every convolutional layer and let the VGG 38 train with the same hyper-
parameters as before. The mean absolute values of the gradients at each epoch

16 TIDOR-VLAD PRICOPE

.in
pu

t_
co

nv
..c

on
v_

0
.in

pu
t_

co
nv

..b
n_

0
.b

lo
ck

_0
_0

..c
on

v_
0

.b
lo

ck
_0

_0
..b

n_
0

.b
lo

ck
_0

_0
..c

on
v_

1
.b

lo
ck

_0
_0

..b
n_

1
.b

lo
ck

_0
_1

..c
on

v_
0

.b
lo

ck
_0

_1
..b

n_
0

.b
lo

ck
_0

_1
..c

on
v_

1
.b

lo
ck

_0
_1

..b
n_

1
.b

lo
ck

_0
_2

..c
on

v_
0

.b
lo

ck
_0

_2
..b

n_
0

.b
lo

ck
_0

_2
..c

on
v_

1
.b

lo
ck

_0
_2

..b
n_

1
.b

lo
ck

_0
_3

..c
on

v_
0

.b
lo

ck
_0

_3
..b

n_
0

.b
lo

ck
_0

_3
..c

on
v_

1
.b

lo
ck

_0
_3

..b
n_

1
.b

lo
ck

_0
_4

..c
on

v_
0

.b
lo

ck
_0

_4
..b

n_
0

.b
lo

ck
_0

_4
..c

on
v_

1
.b

lo
ck

_0
_4

..b
n_

1
.re

du
ct

_b
lo

ck
_0

..c
on

v_
0

.re
du

ct
_b

lo
ck

_0
..b

n_
0

.re
du

ct
_b

lo
ck

_0
..c

on
v_

1
.re

du
ct

_b
lo

ck
_0

..b
n_

1
.b

lo
ck

_1
_0

..c
on

v_
0

.b
lo

ck
_1

_0
..b

n_
0

.b
lo

ck
_1

_0
..c

on
v_

1
.b

lo
ck

_1
_0

..b
n_

1
.b

lo
ck

_1
_1

..c
on

v_
0

.b
lo

ck
_1

_1
..b

n_
0

.b
lo

ck
_1

_1
..c

on
v_

1
.b

lo
ck

_1
_1

..b
n_

1
.b

lo
ck

_1
_2

..c
on

v_
0

.b
lo

ck
_1

_2
..b

n_
0

.b
lo

ck
_1

_2
..c

on
v_

1
.b

lo
ck

_1
_2

..b
n_

1
.b

lo
ck

_1
_3

..c
on

v_
0

.b
lo

ck
_1

_3
..b

n_
0

.b
lo

ck
_1

_3
..c

on
v_

1
.b

lo
ck

_1
_3

..b
n_

1
.b

lo
ck

_1
_4

..c
on

v_
0

.b
lo

ck
_1

_4
..b

n_
0

.b
lo

ck
_1

_4
..c

on
v_

1
.b

lo
ck

_1
_4

..b
n_

1
.re

du
ct

_b
lo

ck
_1

..c
on

v_
0

.re
du

ct
_b

lo
ck

_1
..b

n_
0

.re
du

ct
_b

lo
ck

_1
..c

on
v_

1
.re

du
ct

_b
lo

ck
_1

..b
n_

1
.b

lo
ck

_2
_0

..c
on

v_
0

.b
lo

ck
_2

_0
..b

n_
0

.b
lo

ck
_2

_0
..c

on
v_

1
.b

lo
ck

_2
_0

..b
n_

1
.b

lo
ck

_2
_1

..c
on

v_
0

.b
lo

ck
_2

_1
..b

n_
0

.b
lo

ck
_2

_1
..c

on
v_

1
.b

lo
ck

_2
_1

..b
n_

1
.b

lo
ck

_2
_2

..c
on

v_
0

.b
lo

ck
_2

_2
..b

n_
0

.b
lo

ck
_2

_2
..c

on
v_

1
.b

lo
ck

_2
_2

..b
n_

1
.b

lo
ck

_2
_3

..c
on

v_
0

.b
lo

ck
_2

_3
..b

n_
0

.b
lo

ck
_2

_3
..c

on
v_

1
.b

lo
ck

_2
_3

..b
n_

1
.b

lo
ck

_2
_4

..c
on

v_
0

.b
lo

ck
_2

_4
..b

n_
0

.b
lo

ck
_2

_4
..c

on
v_

1
.b

lo
ck

_2
_4

..b
n_

1
.re

du
ct

_b
lo

ck
_2

..c
on

v_
0

.re
du

ct
_b

lo
ck

_2
..b

n_
0

.re
du

ct
_b

lo
ck

_2
..c

on
v_

1
.re

du
ct

_b
lo

ck
_2

..b
n_

1
lo

gi
t_

lin
ea

r_
la

ye
r

Layers

0.00

0.02

0.04

0.06

0.08

Av
er

ag
e

Gr
ad

ie
nt

Gradient flow

Figure 3. Mean abosolute values of gradients w.r.t model pa-
rameters at each epoch for VGG 38 with BN.

are displayed in Figure 3. We have also applied BN to the VGG 08 model
to see if it improves the results even for more shallow networks and it did
(about 4%). All these results with the accuracy can be seen in Table 1. Note
that for all the experiments, we have conducted tests on different seeds (for
the initial random weights initialization) to check the robustness of the results
and solidy our claims. We used 5 different seeds (0, 100, 550, 1000, 40000)
and we recorded a standard deviation of the accuracy results of 0.499.

It is clear (Figure 3) that BN solves the main problem we are dealing with
in this paper. However, the performance at the moment of VGG 38 does not
justify its complexity as VGG 08 still has similar performance with less
number of model parameters. That’s why we now investigate if we can
improve the performance with an intuitive change in hyper-parameters.

As we noted multiple times in this paper, BN allows training with higher
learning rates, so this is the first thing we are going to try out. We try

VERY DEEP CONVOLUTIONAL NEURAL NETWORKS: PROBLEMS & SOLUTIONS 17

0.01 and 0.1, however, the results are not that successful (Table 1), 0.001
still seems to be the appropriate learning rate to be used. We have chosen
these learning rates because successful models from the literature that use BN
typically choose higher learning rates [6] [9], however, they do use a decaying
factor, so that might explain why it doesn’t work that well in our case.

We have also tried different batch sizes, as we have stated in the literature
review that this is a factor that can influence BN in a big way. We choose
to experiment with 256 as it was used in other studies [6]. We have also
tried 512 because it is more time efficient to use large batch sizes and that
also approximates the gradient of the whole dataset a little bit better. The
computational time decreases by at least 41.66% when we change the batch
size from 100 to 256 or 512, which is impressive, that’s why we move on from
using 100 as batch size for the next experiments.

The original paper that introduces BatchNorm claims that it solves the
training issues even with sigmoid-like activation functions (which are noto-
rious for the vanishing gradient problem) and this seems to be universally
accepted by the community. We tested that out to confirm it (Table 1, Figure
4).

Results so far with BN still can’t yet justify the need of a deeper model
(the test accuracies are similar between VGG 38 and VGG 08), so we conduct
experiments with residual blocks added into the models. Firstly, we wanted
to try out a default version with skip connections but without BN just to
prove that residual blocks alone can solve the vanishing gradient problem and
indeed, our experiment was successful (Table 1 - VGG 38 Resnet).

Model Batchsize Lr Weightdecay Testacc Trainacc
VGG08 Baseline 100 0.001 0 49.95% 55.24%
VGG08 BN 100 0.001 0 53.89% 59.65%
VGG08 BN + Resnet 100 0.001 0 54.45% 60.74%
VGG38 baseline 100 0.001 0 1% 1%
VGG38 BN 100 0.001 0 46.78% 54.20%
VGG38 BN 100 0.01 0 44.14% 48.33%
VGG38 BN 100 0.1 0 22.46% 24.86%
VGG38 BN 256 0.001 0 47.22% 58.05%
VGG38 BN 512 0.001 0 46.49% 60.43%
VGG38 Sigmoid BN 512 0.001 0 26.88% 28.29%
VGG38 Resnet (only) 100 0.001 0 44.77% 52.20%
VGG38 BN + Resnet 512 0.001 0 58.84% 78.65%
VGG38 BN + Resnet 512 0.1 0.0001 30.22% 29.70%
VGG38 BN + Resnet 256 0.01 0.0006 57.67% 72.81%
VGG38 BN + Resnet 256 0.01 0.0001 58.25% 67.50%
VGG38 BN + Resnet 256 0.001 0.0001 61.81 % 85.21%

Table 1. VGG08, VGG38 models - varying hyper-parameters.
Statistical error: +/-0.49.

18 TIDOR-VLAD PRICOPE

0 20 40 60 80 100
Epoch number

2

4

6

8

10

Lo
ss

VGG08_baseline
VGG08_BN_Resnet_optim
VGG38_baseline
VGG38_BN_sigmoid
VGG38_BN_optim
VGG38_BN_Resnet_baseline
VGG38_BN_Resnet_optim

Figure 4. Validation loss during training for different models tested.

0 20 40 60 80 100
Epoch number

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

VGG08_baseline
VGG08_BN_Resnet_optim
VGG38_baseline
VGG38_BN_sigmoid
VGG38_BN_optim
VGG38_BN_Resnet_baseline
VGG38_BN_Resnet_optim

Figure 5. Validation accuracy during training for different
models tested.

However, for the next experiments, we used Resnet + BN as it was rec-
ommended in the original paper [6]. We first tested it on VGG 08 to see if it
adds any improvement to the previous version and indeed, the test accuracy
is slightly higher. However, when training VGG 38 with BN and Residual
Blocks, we got much higher results. Nevertheless, it was clear (Table 1) that

VERY DEEP CONVOLUTIONAL NEURAL NETWORKS: PROBLEMS & SOLUTIONS 19

these models were overfitting on the training data (huge generalization gap),
so we tried adding L2 regularization - varying weight penalty, which also used
in [6]. This has helped, the training evolution summaries can be observed in
Figure 4 and 5.

6. Discussion

Looking at Figure 3, the gradients seem healthy as they do not come
really close to 0 and the scale is big enough, BN solved the vanishing gradient
problem. Note that we expect small gradients for this problem, however, the
scale from Figure 2 was in the O(10−3) region and now it is in O(10−1). This
should mean that the network is indeed learning and the gradient flow provides
meaningful signal backwards to the input layers and indeed, it achieves an
accuracy of 46.78%, similar to what baseline VGG 08 got. Note that there
is a zig-zagg phenomenon that can be observed, this also happens when
training NNs with sigmoid activations (not zero-centered) - the data coming
into a neuron is always positive, then the gradient on the weights (during
backprop) will become either all be positive or all negative - this leads to zig-
zagg dynamics in the gradient updates for the weights. We suspect a similar
cause is in our case.

It seems 256 as batch size gives the best test accuracy, which is not sur-
prising as other studies like [6] for image classification also use that.

Sigmoid as activation function for the hidden units lead to a noisy be-
haviour in training (fig. 4&5), however, the model does somewhat learn and
achieves an accuracy of 26.88% on test, which is not great but proves the
hypothesis that BN makes even deep networks with sigmoid work.

Using Residual Blocks and BN for VGG 08 lead to an about 1% increase
in acc, which is not really justifiable. However, when training VGG 38 with
the same architecture, we can begin to see why deeper is better, the best
model achieving over 60% accuracy on test and 85% on train (Table 1),
granted it overfits much harder than VGG 08. The architecture of this best
model can be seen in Figure 6, note that we display the convolutional
processing and reduction blocks that we mentioned in the previous section,
there are such 5 processing blocks followed by 1 reduction block repeated 3
times in a VGG 38 model.

Note that we have chosen to implement the linear projection to make the
identity smaller as a 1x1 conv with appropriate stride. We have done this
because using max-pooling instead lead to less impressive results, moreover,
this was the recommended way in [6] and we personally believe this adaptive
learnt scaling is better than an absolute one.

20 TIDOR-VLAD PRICOPE

Figure 6. Building blocks for our best model VGG38 BN+Resnet

7. Conclusions and Further Work

Very deep CNNs are responsible for the recent quantum leaps in AI, not
only in computer vision but also in Reinforcement Learning, for example, Al-
phaGo [15]. Training such models is a serious problem and different techniques
need to be applied to get very good results. Simply stacking convolutional
layers does not work for VGG models as we have seen in Figure 2. How-
ever, this can be solved by either BatchNorm or Resnets. Combining these
two together is much better than using them separately. These methods can
also improve more shallow networks (VGG 08); however, the very deep mod-
els completely outperform shallower methods in this case (over 7% increase),
which is expected. However, there is still room for improvement regarding
the hyper-parameters, furthermore, we use only 3x3 convolutions which can
be very restrictive. Models similar to ours, like Wide ResNet, ResNeXt, [24]
achieve much higher accuracy: 79.5%, 82.3%, but they also have much more
trainable parameters, further experimentation on that can be beneficial.

VERY DEEP CONVOLUTIONAL NEURAL NETWORKS: PROBLEMS & SOLUTIONS 21

References

[1] Bjorck, N., Gomes, C. P., Selman, B., and Weinberger, K. Q. Understanding
batch normalization. In Advances in Neural Information Processing Systems (2018),
pp. 7694–7705.

[2] Ciregan, D., Meier, U., and Schmidhuber, J. Multi-column deep neural networks
for image classification. In 2012 IEEE conference on computer vision and pattern recog-
nition (2012), IEEE, pp. 3642–3649.

[3] Cybenko, G. Mathematics of control. Signals and Systems 2 (1989), 303.
[4] Eigen, D., Rolfe, J., Fergus, R., and LeCun, Y. Understanding deep architectures

using a recursive convolutional network. arXiv preprint arXiv:1312.1847 (2013).
[5] Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining and harnessing adver-

sarial examples. arXiv preprint arXiv:1412.6572 (2014).
[6] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recogni-

tion. In Proceedings of the IEEE conference on computer vision and pattern recognition
(2016), pp. 770–778.

[7] Hochreiter, S. Untersuchungen zu dynamischen neuronalen netzen. Diploma, Tech-
nische Universität München 91, 1 (1991).

[8] Hochreiter, S., and Schmidhuber, J. Long short-term memory. Neural computation
9, 8 (1997), 1735–1780.

[9] Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. Densely con-
nected convolutional networks. In Proceedings of the IEEE conference on computer vi-
sion and pattern recognition (2017), pp. 4700–4708.

[10] Ioffe, S., and Szegedy, C. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In Proceedings of the 32nd International Conference
on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015 (2015), F. R. Bach and
D. M. Blei, Eds., vol. 37 of JMLR Workshop and Conference Proceedings, JMLR.org,
pp. 448–456.

[11] Krizhevsky, A., Hinton, G., et al. Learning multiple layers of features from tiny
images. University of Toronto (2009).

[12] Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification with
deep convolutional neural networks. Communications of the ACM 60, 6 (2012), 84–90.

[13] Lian, X., and Liu, J. Revisit batch normalization: New understanding and refine-
ment via composition optimization. In The 22nd International Conference on Artificial
Intelligence and Statistics (2019), pp. 3254–3263.

[14] Martens, J. Deep learning via hessian-free optimization. In ICML (2010), vol. 27,
pp. 735–742.

[15] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez,
A., Hubert, T., Baker, L., Lai, M., Bolton, A., et al. Mastering the game of go
without human knowledge. nature 550, 7676 (2017), 354–359.

[16] Simonyan, K., and Zisserman, A. Very deep convolutional networks for large-scale
image recognition. In 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings (2015),
Y. Bengio and Y. LeCun, Eds.

[17] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov,
R. Dropout: a simple way to prevent neural networks from overfitting. The journal of
machine learning research 15, 1 (2014), 1929–1958.

22 TIDOR-VLAD PRICOPE

[18] Srivastava, R. K., Greff, K., and Schmidhuber, J. Highway networks. CoRR
abs/1505.00387 (2015).

[19] Srivastava, R. K., Greff, K., and Schmidhuber, J. Training very deep networks.
In Advances in neural information processing systems (2015), pp. 2377–2385.

[20] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., and Rabinovich, A. Going deeper with convolutions. In Proceedings
of the IEEE conference on computer vision and pattern recognition (2015), pp. 1–9.

[21] Thacker, W. C. The role of the hessian matrix in fitting models to measurements.
Journal of Geophysical Research: Oceans 94, C5 (1989), 6177–6196.

[22] Wu, D., Wang, Y., Xia, S.-T., Bailey, J., and Ma, X. Skip connections matter: On
the transferability of adversarial examples generated with resnets. unpublished, 2020.

[23] XalosXandrez. Batch normalization before or after relu? https://www.reddit.
com/r/MachineLearning/comments/67gonq/dbatchnormalizationbeforeorafterrelu/.
Published: 2017-04-25.

[24] Xie, S., Girshick, R., Dollár, P., Tu, Z., and He, K. Aggregated residual transfor-
mations for deep neural networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition (2017), pp. 1492–1500.

[25] Yu, D., Seltzer, M. L., Li, J., Huang, J.-T., and Seide, F. Feature learning in deep
neural networks-studies on speech recognition tasks. arXiv preprint arXiv:1301.3605
(2013).

The University of Edinburgh, School of Informatics, 10 Crichton St, New-
ington, Edinburgh EH8 9AB, United Kingdom

Email address: T.V.Pricope@sms.ed.ac.uk

https://www.reddit.com/r/MachineLearning/comments/67gonq/d_batch_normalization_before_or_after_relu/
https://www.reddit.com/r/MachineLearning/comments/67gonq/d_batch_normalization_before_or_after_relu/

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXVI, Number 1, 2021
DOI: 10.24193/subbi.2021.1.02

PERFORMANCE BENCHMARKING FOR NOSQL

DATABASE MANAGEMENT SYSTEMS

CAMELIA-FLORINA ANDOR

Abstract. NoSQL database management systems are very diverse and
are known to evolve very fast. With so many NoSQL database options
available nowadays, it is getting harder to make the right choice for certain
use cases. Also, even for a given NoSQL database management system,
performance may vary significantly between versions. Database perfor-
mance benchmarking shows the actual performance for different scenarios
on different hardware configurations in a straightforward and precise man-
ner. This paper presents a NoSQL database performance study in which
two of the most popular NoSQL database management systems (MongoDB
and Apache Cassandra) are compared, and the analyzed metric is through-
put. Results show that Apache Cassandra outperformes MongoDB in an
update heavy scenario only when the number of operations is high. Also,
for a read intensive scenario, Apache Cassandra outperformes MongoDB
only when both number of operations and degree of parallelism are high.

1. Introduction

Big data came along with big challenges regarding how to store, manage and
distribute a huge quantity of data, generated in short time and from diverse
sources. NoSQL databases were the response to these challenges, specialized
in solving specific big data problems. NoSQL database management systems
are diverse and it is harder to choose the best fit for specific use cases than
it is in the case of relational database management systems. Of course, rela-
tional database management systems present differences from one product to
another, but those differences are less significant than the differences between
NoSQL database management systems. Relational database management sys-
tems are based on the relational model, and the query language used is SQL,

Received by the editors: 18 April 2021.
2010 Mathematics Subject Classification. 68P15, 68P99.
1998 CR Categories and Descriptors. H.2.1 [Database Management]: Logical design

– Data models; H.2.4 [Database Management]: Systems – Distributed databases, Parallel
databases.

Key words and phrases. NoSQL database, performance benchmarking, MongoDB,
Cassandra.

23

24 CAMELIA-FLORINA ANDOR

but NoSQL database management systems do not share the same data model
or query language. It’s quite common to see a different query language for
each NoSQL implementation, and a specific data model, usually other than
relational. Figuring out which NoSQL database management system fits best
your use case is far more difficult than it seems at first, and it requires a thor-
ough study of several NoSQL technical documentations and fine tuning. The
hardware configuration is also important, and performance benchmarking is a
good solution in this case. As NoSQL database management systems have a
fast evolution, observing how their performance evolves between versions can
offer meaningful knowledge.

This paper presents a performance benchmarking study which involves two
of the most popular NoSQL database management systems, MongoDB (ver-
sion 4.4.2) and Apache Cassandra (version 3.11.9). The benchmarking ex-
periments were performed with YCSB, a free and open source benchmarking
framework, which was also used to generate the data sets involved in the
experiments.

2. Background

2.1. NoSQL Data Models. The NoSQL data models considered for this
case study are column-family and document, which are two of the four main
NoSQL data models. The remaining NoSQL data models are key-value and
graph.

The key-value model is the least complex model, and NoSQL database
management systems that use it have a very limited query language, but
very fast operations. Both column-family and document model derive from
the key-value model.

The graph model is the most complex NoSQL data model, and while it’s a
good fit for highly interconnected data, it has some drawbacks regarding hor-
izontal scalability. NoSQL database management systems that use the graph
data model have expressive query languages and constant read performance.

The document data model has much more in common with the column-
family data model than it has with the other two main NoSQL data mod-
els. Both document and column-family data models support high availability,
horizontal scalability, flexible schema and reasonable expressive query lan-
guages. Yet document NoSQL database management systems tend to offer
more schema flexibility and richer query languages than column-family NoSQL
database management systems. Also, column-family NoSQL database man-
agement systems tend to support faster write operations, even at scale.

2.2. NoSQL database management systems. MongoDB[8] and Cassandra[2]
are two open source NoSQL database management systems. MongoDB is

PERFORMANCE BENCHMARKING FOR NOSQL DATABASE MANAGEMENT SYSTEMS25

based on the document data model and Cassandra is based on the column-
family data model. MongoDB has a flexible schema, that can be easily modi-
fied, as the application’s requirements evolve. It is more difficult to adapt the
database schema in Cassandra, where data modeling is query driven (the ap-
plication’s queries must be known from the start). When designing database
schema in Cassandra, the structure of the tables must optimize the appli-
cation’s queries. It’s not uncommon to have several versions of a table, with
minor structure changes in order to optimize different queries on the same data
(data duplication is common in NoSQL databases). From the query language
perspective, MongoDB is by far superior to Cassandra. While Cassandra has
a query language somehow similar to SQL (but far more limited), MongoDB’s
query language is JavaScript based, rich and expressive. Also, MongoDB has
support for many types of secondary indexes (text, geospatial, hidden, etc.),
that are not available in Cassandra. High availability and horizontal scala-
bility are well supported in MongoDB and Cassandra, but the distribution
models are different.

2.3. NoSQL performance benchmarking. Performance benchmarking is
quite handy when working with NoSQL databases. There are benchmark-
ing tools that can be used only for a specific database management sys-
tem (DBMS), like cassandra-stress[11] for Cassandra or cbc-pillowfight [10] for
Couchbase. These types of tools are useful to test a given NoSQL DBMS
in certain scenarios, but they don’t help much when a comparison between
several NoSQL DBMSs is the goal of the benchmarking experiment. For a
fair comparison between several NoSQL DBMSs, a benchmarking tool which
has support for all options considered is necessary. Unfortunately, there are
not many benchmarking tools of this kind available in the open source sec-
tion. YCSB [4] is an open source benchmarking framework aimed at cloud
systems and NoSQL DBMSs. YCSB is a popular benchmarking framework,
relatively easy to understand and use. It supports many NoSQL DBMSs and
can be used on both Windows and Linux operating systems. Also, YCSB
can be used to generate both the data set involved in testing and the data-
base requests according to the chosen workload type. YCSB was also used by
MongoDB Inc. for performance testing of MongoDB, see [12]. Other organi-
zations and researchers used YCSB as well, for benchmarking NoSQL DBMSs.
All NoSQL benchmarking experiments presented in [3], [5], [6] and [7] used
YCSB as benchmarking tool. Other NoSQL benchmarking tools emerge, like
NoSQLBench[9] (used by DataStax), but are still in early stages of develop-
ment.

26 CAMELIA-FLORINA ANDOR

3. Case study

The case study presented in [1] analyzes the database performance metric
called throughput, measured in number of operations/second. Other important
and useful database performance metrics are latency (measured in number
of microseconds/operation) and total runtime (the time necessary to run a
certain number of database operations). The case study presented in this
paper also analyzes the throughput. As NoSQL DBMSs evolve fast and change
a lot from one version to another, it is important to see how those changes
affect performance.

3.1. Experimental setting. I reproduced the experimental study presented
in [1] using newer versions of database management systems and operating sys-
tem without changing the hardware configuration. That experimental study
involved three physical servers with the same hardware configuration. Win-
dows 7 Professional 64-bit was the operating system installed on all servers.
YCSB version 0.12.0, MongoDB version 3.4.4 and Apache Cassandra 3.11.0
were each installed on its dedicated server. I followed the same benchmark-
ing methodology and I performed all benchmarking tests in the same order
and under the same conditions as those performed in the experimental study
presented in [1]. The YCSB, MongoDB and Cassandra versions used in my
experimental study were newer. MongoDB version 4.4.2 was installed with de-
fault settings and the default storage engine, Wired Tiger. Apache Cassandra
version 3.11.9 was installed with default settings and the settings necessary to
avoid write timeouts:

• counter write request timeout in ms set to 100000
• write request timeout in ms set to 100000
• read request timeout in ms set to 50000
• range request timeout in ms set to 100000.

YCSB version 0.17.0 was used to generate the data set and the database
requests involved in tests.
Each application involved (Cassandra, MongoDB and YCSB) ran on its own
server. The server configuration is as follows:

• OS: Windows 10 Professional 64-bit
• RAM: 16 GB
• CPU: Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz, 4 cores, 8 logical

processors
• HDD: 500 GB.

I used the YCSB client to generate a data set having the same size and
schema as the one used in the experimental study I reproduced (4 million
records, each record made of 10 fields, each field contains a 100 byte string

PERFORMANCE BENCHMARKING FOR NOSQL DATABASE MANAGEMENT SYSTEMS27

value that was randomly generated). The same predefined YCSB workloads,
Workload A (50% read operations, 50% update operations) and Workload B
(95% read operations, 5% update operations) were involved, and the asynchro-
nous version of Java Driver was used for both DBMSs. When a benchmarking
test is run using YCSB, the workload type, the total number of operations
to be executed and the number of client threads must be specified. After the
test run, YCSB outputs a file that contains the measured results. For each
workload considered (Workload A and Workload B), the number of operations
parameter was set to 1000, 10000, 100000 and 1000000. For each workload
and number of operations considered, the number of client threads parameter
was set to 1, 2, 4, 8, 16, 32, 64, 128, 256 and 512. Each test having a certain
combination of values for DBMS, workload, number of operations and number
of client threads was repeated three times. I will consider a set of tests all tests
run for a combination of DBMS, workload and number of operations. Before
and after the execution of each set of tests, database server information was
captured. The database server was restarted before the execution of every set
of tests. When all tests for the first workload were executed, the data set was
deleted and a new data set with the same characteristics (schema and number
of records) corresponding to the second workload was generated and loaded
into the database.

3.2. Results. Each test was repeated three times for every combination of
DBMS, workload, number of operations and number of client threads. As a
consequence, a throughput average was computed for every combination of
DBMS, workload, number of operations and number of client threads. This
throughput average was used to create the following charts. A comparison be-
tween Cassandra and MongoDB for each combination of number of operations
and workload is displayed in the first eight charts (Figures 1 to 8).
In case of Workload A (50% update operations, 50% read operations), Figures
1 and 2 show that MongoDB outperforms Cassandra by far, when the number
of operations is relatively small (1000, 10000). When the number of operations
is set to 100000, Cassandra’s performance is almost as good as MongoDB’s,
as shown in Figure 3. However, Figure 4 shows that when the number of
operations is set to 1000000, Cassandra outperforms MongoDB by far when
the number of client threads is greater than or equal to 64.
In case of Workload B (5% update operations, 95% read operations), Figures
5, 6 and 7 show that MongoDB outperforms Cassandra by far when the num-
ber of operations is set to 1000, 10000 and 100000 operations. Figure 8 shows
that Cassandra outperforms MongoDB only when the number of operations
is set to 1000000 and the number of client threads is greater than or equal to
64.

28 CAMELIA-FLORINA ANDOR

Figure 1. 4 Million Records Workload A 1000 Operations - Throughput

When compared to the results presented in [1], it can be observed that in the
case of Workload A and number of operations set to 1000000, Cassandra out-
performed MongoDB when the number of client threads was greater than or
equal to 32, but the throughput does not exceed 45000 operations/second. My
experimental study shows that, for the same scenario, while Cassandra out-
perfomes MongoDB only when the number of client threads is greater than or
equal to 64, the throughput is significantly higher, with the maximum value
around 76000 operations/second.
In the case of Workload B (5% update operations, 95% read operations), the
results presented in [1] show that MongoDB outperformed Cassandra in all
scenarios, and achieved high throughput values (between 68000 and 80000 op-
erations/second) when the number of operations was high (100000 and 1000000
operations). My experimental study shows that, in case of Workload B and
number of operations set to 1000000, Cassandra outperformes MongoDB when
the number of client threads is greater than or equal to 64. Also, Cassandra
presents a maximum throughput value around 62000 operations/second. Com-
pared to MongoDB’s throughput values presented in [1], MongoDB’s through-
put values observed in my study do not exceed 40000 operations/second.

The last four charts (Figures 9 to 12) display the individual performance of
each DBMS, for each workload. Figure 9 presents the evolution of through-
put on Workload A for Cassandra. When the number of operations is low

PERFORMANCE BENCHMARKING FOR NOSQL DATABASE MANAGEMENT SYSTEMS29

Figure 2. 4 Million Records Workload A 10000 Operations - Throughput

Figure 3. 4 Million Records Workload A 100000 Operations - Throughput

30 CAMELIA-FLORINA ANDOR

Figure 4. 4 Million Records Workload A 1000000 Operations
- Throughput

Figure 5. 4 Million Records Workload B 1000 Operations - Throughput

PERFORMANCE BENCHMARKING FOR NOSQL DATABASE MANAGEMENT SYSTEMS31

Figure 6. 4 Million Records Workload B 10000 Operations - Throughput

Figure 7. 4 Million Records Workload B 100000 Operations - Throughput

32 CAMELIA-FLORINA ANDOR

Figure 8. 4 Million Records Workload B 1000000 Operations
- Throughput

(1000, 10000 operations), Cassandra’s maximum throughput value does not
exceed 3100 operations/second. When the number of operations grows at
100000, we can observe a significant increase of throughput (up to 22000 oper-
ations/second), especially as the number of client threads grows. The highest
throughput values (up to 76000 operations/second) can be observed when the
number of operations is set to 1000000, with a slightly decrease when the
number of threads is set to 512.

In Figure 10, the evolution of throughput on Workload A for MongoDB is
displayed. As the number of operations increases, the MongoDB throughput
values increase as well, but remain almost constant when the number of op-
erations is greater than or equal to 100000. The maximum throughput value
does not exceed 23500 operations/second.

Figure 11 presents the evolution of throughput on Workload B for Cassan-
dra. Cassandra’s throughput patterns observed for Workload A are preserved,
but the throughput values observed when the number of operations is set to
1000000 are lower and do not exceed 63000 operations/second.

Figure 12 displays the evolution of throughput on Workload B for Mon-
goDB. The throughput remains the same as observed for Workload A, when
the number of operations is set to 1000, but increases when the number of op-
erations is greater than or equal to 10000. When the number of operations is

PERFORMANCE BENCHMARKING FOR NOSQL DATABASE MANAGEMENT SYSTEMS33

Figure 9. 4 Million Records Workload A Cassandra - Throughput

set to 100000, throughput values rise significantly (compared to those observed
for number of operations set to 10000). Throughput values observed when the
number of operations is increased at 1000000 are slightly higher than those
observed for number of operations set to 100000, but do not exceed 45000
operations/second.

Cassandra version 3.11.9 presents great throughput improvements for both
workloads, especially when the number of operations and number of client
threads are high. MongoDB version 4.4.2 presents significantly lower through-
put values for Workload B, a read intensive workload.

4. Conclusions and future work

NoSQL database management systems have a fast evolution, with signifi-
cant changes between versions. Database performance benchmarking offers a
good overview of how these changes impact application workloads. The ex-
perimental study presented in this paper reveals that the newer Cassandra
version has important throughput improvements, especially when the number
of operations and degree of parallelism are high, for both read and update
operations. This is significant, as Cassandra is generally known to offer fast
write operations, but not as fast read operations. Also, the newer MongoDB
version presents decreased throughput values when the number of operations

34 CAMELIA-FLORINA ANDOR

Figure 10. 4 Million Records Workload A MongoDB - Throughput

Figure 11. 4 Million Records Workload B Cassandra - Throughput

PERFORMANCE BENCHMARKING FOR NOSQL DATABASE MANAGEMENT SYSTEMS35

Figure 12. 4 Million Records Workload B MongoDB - Throughput

and degree of parallelism are high in case of Workload B (95% read operations,
5% update operations). In this case, we can observe that the newer MongoDB
version does not handle a high number of operations with a high degree of
parallelism as well as the newer version of Cassandra does. Also, surprisingly,
the older MongoDB version (3.4.4) performed better than the newer version
(4.4.2) in case of Workload B, under the same experimental conditions. Gen-
erally, one would expect performance improvements from newer versions, but
it is not always the case. This further shows that monitoring the evolution of
performance between versions is important and worth doing.

In the future, I intend to replicate other database performance experimental
studies and to analyze other database performance metrics as well. I plan to
focus on analyzing the latency performance metric, which comes in several
variants: average latency, maximum latency, minimum latency, 95th percentile
latency and 99th percentile latency. As latency reveals how much time is
needed to execute a database operation, it certainly is a performance metric
worth analyzing for all application use cases that require very short response
times.

36 CAMELIA-FLORINA ANDOR

Acknowledgments

Parts of this work were supported through the MADECIP project Dis-
aster Management Research Infrastructure Based on HPC. This project was
granted to Babeş-Bolyai University, its funding being provided by the Sec-
toral Operational Programme Increase of Economic Competitiveness, Priority
Axis 2, co-financed by the European Union through the European Regional
Development Fund Investments in Your Future (POSCEE COD SMIS CSNR
488061862).

References

[1] C.-F. Andor and B. Pârv. NoSQL Database Performance Benchmarking - A Case Study.
Studia Informatica, LXIII(1):80–93, 2018.

[2] Apache Cassandra. http://cassandra.apache.org/. Accessed: 2021-02-14.
[3] Performance Analysis: Benchmarking a NoSQL Database on Bare-Metal and Virtu-

alized Public Cloud - Aerospike NoSQL Database on Internap Bare Metal, Amazon
EC2 and Rackspace Cloud. http://pages.aerospike.com/rs/229-XUE-318/images/

Internap_CloudSpectatorAerospike.pdf. Accessed: 2021-03-24.
[4] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Benchmarking

Cloud Serving Systems with YCSB. Proceedings of the 1st ACM symposium on Cloud
computing, pages 143–154, 2010.

[5] Fixstars. GridDB and Cassandra Performance and Scalability. A YCSB Performance
Comparison on Microsoft Azure. Technical report, Fixstars Solutions, 2016.

[6] A. Gandini, M. Gribaudo, W. J. Knottenbelt, R. Osman, and P. Piazzolla. Performance
Evaluation of NoSQL Databases. EPEW 2014: Computer Performance Engineering,
Lecture Notes in Computer Science, 8721:16–29, 2014.

[7] J. Klein, I. Gorton, N. Ernst, P. Donohoe, K. Pham, and C. Matser. Performance
Evaluation of NoSQL Databases: A Case Study. Proceedings of the 1st Workshop on
Performance Analysis of Big Data Systems, pages 5–10, 2015.

[8] MongoDB. https://www.mongodb.com/. Accessed: 2021-02-14.
[9] NoSQLBench. https://github.com/nosqlbench/nosqlbench. Accessed: 2021-03-24.

[10] Stress Test for Couchbase Client and Cluster. https://docs.couchbase.com/sdk-api/
couchbase-c-client/md_doc_cbc-pillowfight.html. Accessed: 2021-03-21.

[11] The cassandra-stress tool. https://docs.datastax.com/en/dse/5.1/dse-admin/

datastax_enterprise/tools/toolsCStress.html. Accessed: 2021-03-21.
[12] YCSB MongoDB Performance Testing. https://www.mongodb.com/blog/post/

performance-testing-mongodb-30-part-1-throughput-improvements-measured-ycsb.
Accessed: 2021-03-24.

Faculty of Mathematics and Computer Science, Babeş-Bolyai University, Cluj-
Napoca, Romania

Email address: camelia.andor@ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXVI, Number 1, 2021
DOI: 10.24193/subbi.2021.1.03

CONSTRUCTING UNROOTED PHYLOGENETIC TREES

WITH REINFORCEMENT LEARNING

PANNA LIPTÁK AND ATTILA KISS

Abstract. With the development of sequencing technologies, more and
more amounts of sequence data are available. This poses additional chal-
lenges, such as processing them is usually a complex and time-consuming
computational task. During the construction of phylogenetic trees, the re-
lationship between the sequences is examined, and an attempt is made to
represent the evolutionary relationship. There are several algorithms for
this problem, but with the development of computer science, the question
arises as to whether new technologies can be exploited in these areas of
computational biology.

In the following publication, we investigate whether the reinforced
learning model of machine learning can generate accurate phylogenetic
trees based on the distance matrix.

1. Introduction

In phylogenetics, the evolutionary relationships among biological entities
are examined. These entities can mean species, individuals but also genes.
This paper will focus on the relationship between genes. Trying to identify
the inheritance and mutation processes is an important challenge. It can help
biologists to refine their understanding of how evolution works and by that
further develop the models of evolution or a current example of its usefulness:
defining relationships can help to see the geographical distribution of certain
subspecies/mutations. A phylogenetic tree is a branching diagram that rep-
resents the lineage relationships between genes. It reflects how the examined
samples evolved from a common ancestor which is in the root of the tree.
Each internal node splits apart a single group into two descendant groups.
The genes of interest can be found in the leaves of the tree. It is possible to
create an unrooted tree; in this case, the ancestral root is not defined, only

Received by the editors: 24 April 2021.
2010 Mathematics Subject Classification. 68T05.
1998 CR Categories and Descriptors. code [Artificial Intelligence]: Applications and

Expert Systems – Medicine and science.
Key words and phrases. Bioinformatics, Reinforcement Learning, Machine Learning

Algorithms.

37

38 PANNA LIPTÁK AND ATTILA KISS

Figure 1. Example of a rooted (left) and an unrooted (right)
phylogenetic tree. The leaves represent the taxon (A, B, C, D)
and the yellow points are the internal nodes. For example, the
most recent common ancestor of A and B is at their branch
point. The blue point represents the root of the tree, which on
the left example is the most recent common ancestor of A, B
and C, D nodes.

the relatedness of the leaf nodes. In this paper, we will concentrate on these
unrooted trees.

There are many mathematical and algorithmic approaches to construct the
tree of given genes. For distance-based algorithms - like UPGMA and Neigh-
bor join – first we need to perform a multiple sequence alignment to compute
pairwise distances. This data is stored in the distance matrix. In these ap-
proaches, we try to generate a tree where sequences with shorter pairwise
distances are closer to each other.

Another type of algorithm is the character-based approach. The Maximum
Parsimony method implies an implicit model of evolution. It tries to find a
tree with a minimal number of evolutionary steps required to explain the input
data. The Maximum Likelihood method uses probability calculations based
on a given model of evolution. It considers all possible trees and therefore it
is computationally intense, more precisely it is an NP-hard problem [2].

We will discuss the Neighbor join (NJ) [16] algorithm in more detail in
the Related Works section. We investigate how an unrooted tree that was
constructed based on the distance matrix could be constructed by a reinforce-
ment learning model. Even though NJ is considered a fast algorithm (there
are heuristic-accelerated versions, see Related Works), implementing the orig-
inal method leads to an algorithm of O(n3) time complexity [20], which is not
ideal for large data sets.

Reinforcement learning (RL) is one of the three paradigms of machine learn-
ing [22]. It is life-like in the sense that learning is based on experiences. Given
an environment and an agent within, the agents goal is to find a series of
actions with the maximum reward. The agent receives a reward after every
action/step it makes, and the purpose is to learn what decision to make at

CONSTRUCTING UNROOTED PHYLOGENETIC TREES WITH RL 39

each state to earn the highest reward at the end of the episode, that is, to
determine an optimal policy.

In this paper, we examine how the RL agent can construct an accurate
phylogenetic tree by making decisions in the environment described in the
Main contribution section. During the training phase, the agent tries to find
the most suitable policy which would be used on the test data set to determine
the accuracy of the algorithm. Our experiments have shown that with this
approach, it is possible to create sufficiently accurate unrooted phylogenetic
trees based on the distance matrices.

2. Related Works

The Neighbor join algorithm was first introduced by Saitou and Nei [16] in
1987. The main principle is to minimize the total branch length at each stage;
therefore, it is a greedy algorithm. For choosing the two taxa to merge, each
step a Q matrix has to be calculated, shown in Formula 1.

(1) Q(i, j) = (n−2)d(i, j)−
n∑

k=1

(d(i, k))−
n∑

k=1

(d(k, j)) (∀i, j : 1 ≤ i < j ≤ n)

The two sequences with the smallest Q value will be joined. After that, we
have to recalculate each taxon’s distance to the new u node. In 1988, Studier
and Keppler [20] published an improved version of NJ, correcting the way of
inferring the distances, as shown in Formula 2 (considering i, j is joined and k
is every other taxon). In the RL approach, we eliminate the Q matrix and let
the RL agent learn a policy to decide in each state which two taxa to choose
for the next join.

(2) d(u, k) =
1

2
[d(i, k) + d(k, j)− d(i, j)]

As mentioned before, this algorithm has O(n3) time complexity [20], which
is not ideal for large data sets. There are several works in the literature
with heuristic-accelerated versions. In this section, we discuss some of these
approaches.

QuickJoin [10] introduces an algorithm with Θ(n2) complexity, although
the worst-case remains O(n3). It uses a quad-tree to find the lower bounds
of Q(i, j) values, therefore there is no need to calculate the whole Q matrix:
the algorithm can skip when the lower bound is higher than one of the known
Q(i, j) value. This prunes the search for the minimal Q(i, j) value. For build-
ing the quad-tree they use a linear function, which only depends on d(i, j).

40 PANNA LIPTÁK AND ATTILA KISS

RapidNJ [18] uses the observation that in the formula of the Q matrix
(shown in Formula 1), the sum is constant in the context of row i. Therefore,
it can be used as an upper bound for each row in Q, reducing the search
space. This approach has a worst-case O(n3) complexity, but in the paper,
they showed that in practice it has a better performance. NINJA [24] is based
on the same idea: dramatically reducing the viewed candidates at each step,
but it improves the results of RapidNJ, while still offering O(n3) worst-case
time complexity.

There are two other methods worth mentioning: Relaxed neighbor join [4]
and Fast neighbor join [3] to improve the speed by choosing the taxon to join
from a subset. In the relaxed version, a transformed distance is calculated
for the sequences and two taxa are joined if they are they are the minimum
transformed distance of each other. Fast neighbor join offers O(n2) time com-
plexity, using the visible set as the candidate set for choosing two taxa to join.
These two methods are proven fast, but at the cost of the phylogenetic tree
they construct provides only an approximate solution if the pairwise distances
are not nearly-additive.

These works are just some of the more important milestones, but it also
shows how important the improvement of the time complexity of the NJ is in
phylogenetics. With the development of artificial intelligence in recent years,
there has been a tendency to take advantage of the opportunities offered by
machine learning in other fields as well, such as phylogenetics. We would like
to present some of these approaches.

Works using machine learning for phylogenetic tree construction already
exists. In [1], they introduced an approach to the case where the distance
matrix is incomplete. By using deep architectures, they could eliminate the
need for a molecular clock assumption, representing a real-world occurrence
of the problem.

Multiple sequence alignment is also a challenging problem of bioinformatics.
In [11] a reinforcement learning-based approach was introduced. They found
that the RL approach outperformed (in most cases) other methods, whilst
decreasing the computational time. The training process used the Q-learning
algorithm. Another solution for this problem uses a deep RL algorithm and a
long short-term memory network, introduced in [8]. Their experiments show,
that this version not only outperforms canonical multiple sequence aligner
tools but other RL approaches too.

In [23] a convolutional network was used to infer the topology of an unrooted
tree by classification. They experimented on simulated data sets and the
results showed that this model has great potential. It was not only faster than
other methods but it was highly accurate and the accuracy of the classification

CONSTRUCTING UNROOTED PHYLOGENETIC TREES WITH RL 41

could be further improved by the number of training data sets. The limitation
of this approach is the number of sequences, it was constructed to classify the
topology of four sequences (quartet topologies).

An example of a more specific use-case of phylogenetic trees was presented
in [9]: an inverse reinforcement learning approach to model a cancer cell’s ge-
netic evolutionary process. In this method, the optimal policy and the reward
function were reverse engineered to reach interpretable biological conclusions.

In this section, the variants and complexity of NJ algorithms were presented,
as well as examples of how artificial intelligence has been used in bioinformat-
ics. The question arose as to whether the NJ problem could be solved by
reinforcement learning if we consider each joining operation as a step that
also influences the possible future operations. Thus, it is up to the RL agent
to decide which two taxon’s merging will lead to an optimal solution. At the
time of writing, to the knowledge of the authors, no attempt has been made
to use the RL method to determine the topology of phylogenetic trees.

3. Main contribution

In this section, we introduce the proposed model of reinforcement learning
to solve the problem of constructing unrooted phylogenetic trees based on
distance matrices.

The scene of learning is the environment where the agent performs actions
that cause the state of the environment to change and the next step takes
place in this new state. If the agent reaches the predefined stop condition, the
episode ends and the process starts all over again. The agent’s knowledge of the
environment is called observation and along these, it tries to find connections
between the decisions and the reward it receives at the end of each episode.
The goal of the model is to learn a policy, to be able to make good (rewarding)
decisions in any given state of the environment.

3.1. Environment. The input of the proposed model is an (n+ 1)× (n+ 1)
(n > 3) dimensional matrix. The first row and column contain the sequence
label, which will symbolize the particular taxa in the completed phylogenetic
tree. Omitting the elements containing the labels, we get an n×n dimensional
matrix, which is the distance matrix of the sequences.

A distance matrix is symmetric and the diagonal only contains zeros, there-
fore it is enough to store the upper triangular of it as a vector for the model.
Since labels must also be stored for the tree, we create two vectors from every
distance matrix. The state space S = {s0, s1, ..., sn∗(n−1)

2

} contains the dis-

tance values, and the labels indicate which two sequence labels belong to that
distance. The length of S is the size of the upper triangular matrix, which is

42 PANNA LIPTÁK AND ATTILA KISS

Figure 2. Schematic model of the S state space

n∗(n−1)
2 . If we assume that the i. sequence label is ”i” (∀i : 1 ≤ i ≤ n) then

the initialization of the state vector should follow Formula (3).

p =

i−2∑
k=1

(n− k) + j − i (∀i, j : 1 ≤ i < j ≤ n) sp = d(i, j)(3)

The action space A is defined as choosing a state from S. More specifically,

A = {a1, ..., an−2} where 1 ≤ ar ≤ n∗(n−1)
2 (∀1 ≤ r ≤ n− 2). Every action rep-

resents a merge of two sequences in the phylogenetic tree, therefore the length
of the action space is n − 2: given n sequences we define a step as arbitrary
choosing two sequences to merge, after 1 step there are n − 1 sequences left,
after n − 2 steps there are n − (n − 2) = 2 left, at this point we do not need
to take more steps, because the only choice we have is merging the last two
taxon which results in a phylogenetic tree.

After every step, the environment has to be updated according to the chosen
action. This consists of updating the distance values, which are done according
to the NJ algorithm, and of modifying the labels. A new distance must be
calculated for every position where at least one of the corresponding sequences
contains a taxon that was chosen for being merged. For example, if in a given
step ”i” and ”j” are the two taxon that will be merged to a common ancestor,
then we have to update every distance that contains either ”i” or ”j” and in
the corresponding label change ”i” or ”j” to ”ij”. As a result, the constructed
tree will contain (i,j) (according to the Newick format [13]). Note that after
the first step, a merging can consist of an already existing subtree. For this
model, branch lengths are not calculated only the topology of the tree but
future work will consider extending the model.

CONSTRUCTING UNROOTED PHYLOGENETIC TREES WITH RL 43

As Figure 2 shows, the environment itself is a tree graph with a depth of
n − 2. The tree contains invalid states: if the algorithm starts with n taxon
then after the first step there are n− 1 taxon left and the number of possible

taxa pairs for the next step is (n−1)(n−2)
2 ; thus, in this episode we define the

following states s′(n−1)∗(n−2)
2

+1
, s′(n−1)∗(n−2)

2
+2
, ..., s′n∗(n−1)

2

as invalid states.

The RL agent starts in the s0 state, in each step it chooses a number between

1 and n(n−1)
2 and moves to the corresponding state. If the state is valid, then

the two nodes can be merged and the affected distances have to be recalculated,
hence the change in the state’s notation system (s′). If the chosen state was
invalid then in this episode the agent failed to construct a phylogenetic tree
and the episode ends. Figure 2 is an example where the agent’s first choice is
1 and the other not chosen nodes are not further explored in this episode.

3.2. Reward function. If the agent chooses an action that corresponds to
an invalid state then the episode ends with −1 as the reward. If the RL agent
reaches a leaf of the tree with a valid state then the episode also ends and the
reward will be proportional to the symmetric difference [15] between the RL
constructed tree and the phylogenetic tree calculated by the aforementioned
NJ algorithm. Let π be the sequence of decisions made by the agent, where
π = (π0, .., πk) and ∀k ∈ {1, ..., n − 2}, πk is an element of the state space.
Furthermore, we define symdiff(t1, t2) as the symmetric difference between
phylogenetic trees t1 and t2. In this case, the reward function can be defined
as shown in Formula (4) where treec is the tree constructed by the RL agent
and treeNJ was calculated by the original NJ algorithm.

r(πk|πk−1, ..., π1) =

−1 , πk is an invalid state
(3n−6)−symdiff(treec,treeNJ)

(3n−6) ∗ 10 , k = n− 2

0 , otherwise

(4)

In Formula (4), 3n − 6 is the maximum symmetric difference between two
trees with n nodes based on Robinson-Foulds (1981) [15]. With the given
function, we transform the symmetric difference, which is in [0, 3n−6] - where
0 means the two trees are identical - to [0, 10] where 10 means that they are
identical. This is necessary because the agent tries to maximize the reward,
and the goal is to construct phylogenetic trees similar to the tree that was
produced by the NJ algorithm. The third case of a step is when the agent
chose a valid state but it was not a leaf node. In this case, the model rewards
this step with 0, because in this state it cannot determine whether this step
was optimal for the phylogenetic tree that will be ideally constructed at the
end of the episode.

44 PANNA LIPTÁK AND ATTILA KISS

Algorithm 1: One step in the RL environment

Input: action
1 if episodeEnded then
2 resetEnvironment();

3 end

4 if state[action] == -1 then
5 episodeEnded = True;

6 terminate : state, reward = −1;

7 else
8 firstNode = get first node from labels[action];

9 secondNode = get second node from labels[action];

10 newNode = firsNode+ secondNode;

11 newLabels = [];

12 newDistances = [];

13 for label in labels do
14 if label contains firstNode then
15 distF irst = state[index of label];

16 get otherNode from label;

17 for otherLabel in labels do
18 if otherLabel contains secondNode and otherNode then
19 distSecond = state[index of otheLabel];

20 end

21 end

22 newDistance = 1
2 ∗ (distF irst+ distSecond− state[action]);

23 add newNode + otherNode to newLabels;

24 add newDistance to newDistances;

25 end

26 end

27 delete affected states and labels;

28 add newLabels to labels and newDistances to state;

29 add −1 to state and empty label to labels for every invalid state;

30 addNewNodeToNewickTree(firstNode, secondNode);

31 if there is only one valid state left then
32 addNewNodeToNewickTree(remaining nodes);

33 constructedTree = treeP ieces[0];

34 episodeEnded = True;

35 end

36 if episodeEnded then
37 diff = symmetricDifference(goalTree, constructedTree);

38 terminate : state, reward = ((3 ∗ n− 6)− diff)/(3 ∗ n− 6) ∗ 10;

39 else
40 transition : state, reward = 0, discount;

41 end

42 end

CONSTRUCTING UNROOTED PHYLOGENETIC TREES WITH RL 45

Algorithm 1 presents the pseudo-code of a step in the proposed RL en-
vironment. The input is the chosen action and at the end of the step the
environment either transitions into a new state (see line 40 of Algorithm 1) or
the episode ends because of an invalid state (see lines 4-6 of Algorithm 1) or
because it finished the construction of the phylogenetic tree (see lines 31-34 of
Algorithm 1).

3.3. Policy. The policy is the strategy that the agent uses to reach its goal in
a given environment. It is the function of the current state of the environment.
In this model, the RL agent starts exploring the states with a random policy
and the goal is to find the optimal policy by the end of the training phase.
Updating the policy by determining the optimum next action is based on the
Q values, the values of specific actions. The Q value is the function of the
current state s and the action a made in that state. As shown in Formula
(5), the Q value consists of the immediate reward received by taking action
a in state s and the maximum reward that could be earned in the following
state (s′), multiplied by the discount factor (γ). It is a recursive equation as
s′ will depend on s′′ and so on. In an optimal policy, the agent chooses an
action with the maximum Q value. The equation for updating the Q values
is shown in Formula (6). For calculating the new Q′ value for a given state
and action the formula contains the learning rate α which determines to what
extent should new information overwrite old Q values: set to 0 means only
the old information is taken to account, and 1 means only the most recent
information.

(5) Q(s, a) = r(s, a) + γmax
a

Q(s′, a)

(6) Q′(st, at) = Q(st, at) + α ∗ (r(st, at) + γmax
a

Q(st+1, a)−Q(st, at))

Calculating all the Q values for a given state is complex, both computa-
tionally and in many cases storage-wise. In these cases, deep Q learning [12]
could be a solution, because it uses a neural network to estimate the Q values
for each state-action pair and therefore approximates the optimal Q function.
The input of the deep Q network is a state and the outputs are estimated
Q values for each possible action from the given state. The proposed model
used a deep Q network with 100 layers supplemented with a replay buffer of a
maximum size of 10000. A replay buffer consists of the previous step’s transi-
tion data and the deep Q network samples a small batch of transitions for its
calculations because it is a more stable approach to use uncorrelated samples
than using only the latest transitions.

46 PANNA LIPTÁK AND ATTILA KISS

4. Experimental Results

For the experiments, we simulated data sets with different tree topologies
using Rose [19] which is a tool that implements the probabilistic model of
evolution. As an input of this algorithm, we created several trees in Newick
[13] format and set 50 as the average length of the sequences. The trees can be
divided into three categories according to their topology: balanced, pectinate,
and random. The output of Rose is the generated alignment. From the align-
ments, we calculate the distance matrices with Emboss’s [14] distmat module.
The reinforcement learning algorithm can be parameterized to work with any
constant number of sequences and the training has to run on a data set that
contains alignments with the same number of sequences. To create the tree we
wanted to resemble the one we constructed, we used the DendroPy library’s
[21] NJ algorithm and also to calculate the symmetric difference. We imple-
mented the proposed approach in Python using Tensorflow’s reinforcement
learning library, TF-Agents [6].

We trained the proposed RL algorithm on data sets of different sizes: 100,
300, and 500 distance matrices, each containing 3 types of topologies. 25%−
25% of the distance matrices was based on pectinate and balanced trees and
the rest 50% was based on random trees. For these experiments, each data
set had 6 sequences, and for each type of topology, we assigned randomized
branch lengths to have a diverse training set.

Figure 3 shows how the average return changes as the number of training
sessions increases. One training session means going through the training data
set and trying to construct the phylogenetic tree for the given distance matrix
and repeating on each one 10 times to encourage exploitation. Every test case
had the same parameters except the discount factor. Each time the average
return was calculated using the trained policy on a different evaluation envi-
ronment which also contained the training data set, thereby we can determine
whether the policy became more accurate or not on the training data set.

We designed this experiment to determine the discount factor which is an
important training parameter. The discount factor is between 0 and 1 and
it means whether the agent should prioritize immediate rewards (0) or prefer
potential future rewards (higher values) the agent expects to receive. In the
experiment shown in Figure 3a, we used 0.05 as the discount factor and the di-
agrams show what we would expect: in this environment, immediate rewards
have smaller significance than future rewards. Higher discount factor values
showed more suitable tendencies. In this algorithm, the RL agent has to focus
on maximizing what he receives at the end of the episode but also consider im-
mediate rewards due to avoiding invalid states. The results of the experiments

CONSTRUCTING UNROOTED PHYLOGENETIC TREES WITH RL 47

1 2 3 4 5 6 7 8 9 10
 4.53 4.987 5.41 5.547 5.147 5.36 5.447 5.26 5.433 5.55
 5.324 5.48 5.506 5.793 5.578 5.902 6.217 5.739 6.928 5.967
 5.313 5.776 5.679 5.607 5.523 5.513 5.15 5.333 5.59 5.743

0

2

4

6

8

10

A
ve

ra
ge

 r
et
ur
n

100 300 500

(a) 0.05 discount factor

1 2 3 4 5 6 7 8 9 10
 5.483 5.477 5.867 6.217 6.233 6.2 6.55 6.65 5.983 6.6
 6.861 6.672 6.944 6.644 7.022 7.167 8.067 7.017 7.383 7.411
 5.853 6.093 7.057 7.343 6.677 6.723 7.427 7.057 6.903 7.423

0

2

4

6

8

10

A
ve

ra
ge

 r
et
ur
n

100 300 500

(b) 0.5 discount factor

Figure 3. Average return of the reward function at the end
of each session with different discount factor parameters

that were performed to determine the discount factor are shown in Figure 3,
and amongst them, the most promising test case is shown in Figure 3d.

Based on these results, for the upcoming experiments, we used 0.95 as the
discount factor.

For determining the accuracy, we experimented with different topology ra-
tios in the training data set and examined how these differences affected the
outcome. In the experiment shown in Figure 4, we trained every model during
10 sessions (e.g. for a data set containing 500 distance matrices this means
50000 episodes). According to the previous experiment, the larger data sets
could reach better results after several episodes of training, therefore we only
examined the cases where the training sets contained 300 and 500 distance

48 PANNA LIPTÁK AND ATTILA KISS

1 2 3 4 5 6 7 8 9 10
 5.4 6.1 6.5 6.15 6.2 6.45 6.067 6.633 6.833 6.75
 6.633 7.006 7.294 7.328 7.839 7.294 8.278 7.844 8.022 7.894
 6.45 6.583 6.903 6.743 7.127 7.57 7.57 7.85 7.907 7.637

0

2

4

6

8

10

A
ve

ra
ge

 r
et
ur
n

100 300 500

(c) 0.75 discount factor

1 2 3 4 5 6 7 8 9 10
 6.367 6.433 6.783 6.7 6.917 6.65 6.517 6.433 7.017 6.567
 6.6 6.683 6.578 6.383 6.739 6.694 6.5 6.611 6.722 6.967
 7.447 7.077 7.447 7.527 7.323 7.473 7.54 7.649 8.15 7.89

0

2

4

6

8

10

A
ve

ra
ge

 r
et
ur
n

100 300 500

(d) 0.95 discount factor

Figure 3. Average return of the reward function at the end
of each session (cont.)

matrices. For this experiment, first, we had to create a test data set in the
same way as the training data set and separate the trees by their topology,
so we can evaluate the differences between them. For every topology, the test
data set on which we evaluated the accuracy, contained 100 distance matrices.
The result of the training is a policy by which the RL agent makes decisions
about the next step in the algorithm. Using this policy, we constructed trees
from the test data set and used the end reward as the accuracy (as mentioned
before if the algorithm constructed a tree, then the end reward is between 0
and 10 where 10 means the tree is identical to the goal tree). In this evalu-
ation phase, we still used the DendroPy library’s NJ algorithm to determine
the symmetric difference.

CONSTRUCTING UNROOTED PHYLOGENETIC TREES WITH RL 49

Pectinate Balanced Random
0

2

4

6

8

10

A
cc
ur
ac

y

7.37 7.37
6.82

8.0
8.77

7.72

300 500

(a) 40% - 10% - 50% ratios

Pectinate Balanced Random
0

2

4

6

8

10

A
cc
ur
ac

y

7.22
7.87

6.95
7.63 7.4 7.72

300 500

(b) 30% - 10% - 60% ratios

Pectinate Balanced Random
0

2

4

6

8

10

A
cc
ur
ac

y

6.77
7.3

6.68
7.78

8.83
7.88

300 500

(c) 40% - 20% - 40% ratios

Pectinate Balanced Random
0

2

4

6

8

10

A
cc
ur
ac

y

7.0 7.28
6.72

7.8 7.62 7.77

300 500

(d) 30% - 20% - 50% ratios

Figure 4. Accuracy on test data set with different topology
ratios (balanced - pectinate - random) in the training set

Figure 4 shows how the different topology ratios in the training data set
affected the accuracy of the model. In the cases of the smaller data set, the
model could reconstruct a balanced tree with the highest accuracy, even if it
was mostly trained on trees with other topologies. Therefore the training data
set could contain balanced trees in a small ratio (10%) without compromising
the accuracy of this topology. The overall highest accuracy was detected if
the policy was trained on the data set containing 500 distance matrices and
the proportion of trees was as follows: 40% pectinate, 10% balanced and 50%
random. Upon these results we examined whether a longer training session
could improve the policy’s accuracy.

50 PANNA LIPTÁK AND ATTILA KISS

Table 1. Accuracy results of the trained policies on different
topologies. Each policy was trained on the data set contain-
ing 500 distance matrices: 10% pectinate, 40% balanced and
50% random trees. The columns associated with the topologies
contain the average return of the model

Episodes Pectinate Balanced Random Average accuracy

50 000 8.0 8.77 7.72 81.63%
100 000 8.48 8.55 8.28 84.36%
150 000 8.15 8.53 8.02 82.33%

Table 1 shows how the accuracy increases as we double the number of
episodes in the training session in the case when the training data set con-
tained 500 distance matrices. With 100000 episodes of training the average
accuracy was 84.36%, but the further increase of the episodes resulted in the
decrease of the accuracy, possibly due to overfitting, which means the model
became too specific to the training data. For the model to work on different
data as well, the training has to stop when the prediction has sufficient ac-
curacy but it does not yet become too precise to the data it was trained on,
because that would impact the generalization negatively. Our experiments
showed that the model on the aforementioned training data set was the most
accurate when it was trained for 100000 episodes.

Both the training and test data set were created with Rose [19] using the
same parameters and therefore having the same model of evolution. It is
expected that this evolutionary model affects the accuracy of the algorithm.
To verify it we tested the model on data with a different model of evolution.
We selected a 6-element subset of the Sarich data set [17] [5] and constructed
the phylogenetic tree with the trained model. The result showed 50% accuracy,
which means that indeed the RL model approximates the model of evolution of
the training data set. To have a more generalized model further experiments
have to be performed by expanding the training data set with different types
of evolution models.

5. Conclusions and Future Work

In this study, we examined how a phylogenetic tree constructed by NJ
could be recreated with a type of artificial intelligence, the reinforced learning
model. The essence of the proposed model is that the RL agent moves in a tree
graph where each descendant indicates which two individuals are joined in the
constructed tree. At the end of the episode, the agent is rewarded for how well

CONSTRUCTING UNROOTED PHYLOGENETIC TREES WITH RL 51

he managed to recreate a tree similar to the one constructed by the traditional
NJ algorithm. The model uses a deep Q network to find the optimal policy.

Our experiments showed that the proposed model has the possibility to
produce an accurate phylogenetic tree based on the distance matrix, and this
accuracy could be further improved by refining the training data set. Although
the model has great potential for constructing accurate phylogenetic trees, it
has its limitation. For each number of sequences that have to be joined, a
unique RL model has to be trained because a model only works for a constant
number of sequences that the training session’s data sets contained.

This model outlines a generalized approach to the problem and in this
form is a model illustrating artificial intelligence rather than an algorithm for
producing real phylogenetic trees. However, we believe that it could serve as
a useful basis on which to build a solution to the real problem.

In the future, we want to supplement the model with a long short-term
memory network [7]. It may be worthwhile to implement this addition to the
deep Q learning phase because it has the advantage of being able to memorize
long/hidden dependencies and thus make more accurate decisions.

Besides, further experiments could be performed to improve the presented
results by expanding the training data set (10− 100 times and with different
models of evolution) and by increasing the number of episodes in the training
phase accordingly.

The presented results, although promising, were still generated on simu-
lated data. For the RL approach to provide a solution in real cases, the model
should be supplemented to work with incomplete or inaccurate data struc-
tures, or even starting one step further, where the sequences serve as input,
thus providing more information, not just a statistic representation about the
sequences. Also, when calculating trees, it would be worthwhile to calculate
the length of the branches as well, not just the topology. In this case, the
comparison of trees in the reward function would not be done according to the
symmetric difference, but according to the Robinson-Foulds algorithm [15].
Furthermore, the case where a rooted phylogenetic tree has to be constructed
could be examined.

Our proposed model is an example of how artificial intelligence and deep
learning can be applied in bioinformatics, where many computationally com-
plex problems possibly could be solved more effectively by the application of
these technologies.

6. Acknowledgements

The project was supported by the European Union, co-financed by the
European Social Fund (EFOP-3.6.3-VEKOP-16-2017-00002).

52 PANNA LIPTÁK AND ATTILA KISS

References

[1] Bhattacharjee, A., and Bayzid, M. S. Machine learning based imputation tech-
niques for estimating phylogenetic trees from incomplete distance matrices. BMC ge-
nomics 21, 1 (2020), 1–14.

[2] Chor, B., and Tuller, T. Maximum likelihood of evolutionary trees: hardness and
approximation. Bioinformatics 21, suppl 1 (2005), i97–i106.

[3] Elias, I., and Lagergren, J. Fast neighbor joining. In International Colloquium on
Automata, Languages, and Programming (2005), Springer, pp. 1263–1274.

[4] Evans, J., Sheneman, L., and Foster, J. Relaxed neighbor joining: a fast distance-
based phylogenetic tree construction method. Journal of molecular evolution 62, 6
(2006), 785–792.

[5] Felsenstein, J., and Felenstein, J. Inferring phylogenies, vol. 2. Sinauer associates
Sunderland, MA, 2004.

[6] Guadarrama, S., Korattikara, A., Ramirez, O., Castro, P., Holly, E.,
Fishman, S., Wang, K., Gonina, E., Wu, N., Kokiopoulou, E., Sbaiz,
L., Smith, J., Bartók, G., Berent, J., Harris, C., Vanhoucke, V.,
and Brevdo, E. TF-Agents: A library for reinforcement learning in tensorflow.
https://github.com/tensorflow/agents, 2018. [Online; accessed 06-April-2021].

[7] Hochreiter, S., and Schmidhuber, J. Long short-term memory. Neural computation
9, 8 (1997), 1735–1780.

[8] Jafari, R., Javidi, M. M., and Rafsanjani, M. K. Using deep reinforcement learning
approach for solving the multiple sequence alignment problem. SN Applied Sciences 1,
6 (2019), 1–12.

[9] Kalantari, J., Nelson, H., and Chia, N. The unreasonable effectiveness of inverse
reinforcement learning in advancing cancer research. In Proceedings of the AAAI Con-
ference on Artificial Intelligence (2020), vol. 34, pp. 437–445.

[10] Mailund, T., and Pedersen, C. N. Quickjoin—fast neighbour-joining tree recon-
struction. Bioinformatics 20, 17 (2004), 3261–3262.

[11] Mircea, I.-G., Bocicor, I., and Czibula, G. A reinforcement learning based ap-
proach to multiple sequence alignment. In International Workshop Soft Computing Ap-
plications (2016), Springer, pp. 54–70.

[12] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare,
M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al.
Human-level control through deep reinforcement learning. nature 518, 7540 (2015), 529–
533.

[13] Olsen, G. The ”newick’s 8: 45” tree format standard. World-Wide-Web Reference.
http://evolution.genetics.washington.edu/phylip/newick doc.html (1990).

[14] Rice, P., Longden, I., and Bleasby, A. Emboss: the european molecular biology
open software suite. Trends in genetics 16, 6 (2000), 276–277.

[15] Robinson, D. F., and Foulds, L. R. Comparison of phylogenetic trees. Mathematical
biosciences 53, 1-2 (1981), 131–147.

[16] Saitou, N., and Nei, M. The neighbor-joining method: a new method for reconstruct-
ing phylogenetic trees. Molecular biology and evolution 4, 4 (1987), 406–425.

[17] Sarich, V. M. Pinniped phylogeny. Systematic Zoology 18, 4 (1969), 416–422.
[18] Simonsen, M., Mailund, T., and Pedersen, C. N. Rapid neighbour-joining. In

International Workshop on Algorithms in Bioinformatics (2008), Springer, pp. 113–
122.

CONSTRUCTING UNROOTED PHYLOGENETIC TREES WITH RL 53

[19] Stoye, J., Evers, D., and Meyer, F. Rose: generating sequence families. Bioinfor-
matics (Oxford, England) 14, 2 (1998), 157–163.

[20] Studier, J. A., and Keppler, K. J. A note on the neighbor-joining algorithm of
saitou and nei. Molecular biology and evolution 5, 6 (1988), 729–731.

[21] Sukumaran, J., and Holder, M. T. Dendropy: a python library for phylogenetic
computing. Bioinformatics 26, 12 (2010), 1569–1571.

[22] Sutton, R. S., and Barto, A. G. Reinforcement learning: An introduction. MIT
press, 2018.

[23] Suvorov, A., Hochuli, J., and Schrider, D. R. Accurate inference of tree topologies
from multiple sequence alignments using deep learning. Systematic biology 69, 2 (2020),
221–233.

[24] Wheeler, T. J. Large-scale neighbor-joining with ninja. In International Workshop on
Algorithms in Bioinformatics (2009), Springer, pp. 375–389.

ELTE Eötvös Loránd University, Faculty of Informatics, Budapest, Hungary
Email address: ie33ou@inf.elte.hu, kiss@inf.elte.hu

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXVI, Number 1, 2021
DOI: 10.24193/subbi.2021.1.04

DETECTING THE MOST IMPORTANT CLASSES FROM

SOFTWARE SYSTEMS WITH SELF ORGANIZING MAPS

ELENA-MANUELA MANOLE

Abstract. Self Organizing Maps (SOM) are unsupervised neural net-
works suited for visualisation purposes and clustering analysis. This study
uses SOM to solve a software engineering problem: detecting the most im-
portant (key) classes from software projects. Key classes are meant to link
the most valuable concepts of a software system and in general these are
found in the solution documentation. UML models created in the design
phase become deprecated in time and tend to be a source of confusion
for large legacy software. Therefore, developers try to reconstruct class
diagrams from the source code using reverse engineering. However, the re-
sulting diagram is often very cluttered and difficult to understand. There is
an interest for automatic tools for building concise class diagrams, but the
machine learning possibilities are not fully explored at the moment. This
paper proposes two possible algorithms to transform SOM in a classifica-
tion algorithm to solve this task, which involves separating the important
classes - that should be on the diagrams - from the others, less important
ones. Moreover, SOM is a reliable visualization tool which able to provide
an insight about the structure of the analysed projects.

Introduction

Nowadays, many software engineering problems are tackled by means of
computational intelligence. The idea is to reformulate some difficult, repeti-
tive, expensive, or even boring software engineering activities as search prob-
lems that can benefit from the advantages of Artificial Intelligence. Various

Received by the editors: 24 May 2021.
2010 Mathematics Subject Classification. 68T05, 68T20.
1998 CR Categories and Descriptors. I.2.6 [Artificial Intelligence]: Learning – Con-

nectionism and neural nets; D.2.2 [Software Engineering]: Design Tools and Techniques
– Computer-aided software engineering (CASE).

Key words and phrases. self organizing maps, artificial neural networks, machine learn-
ing, classification algorithms, search based software engineering, software visualisation, key
class detection, condensing class diagrams .

54

DETECTING THE KEY CLASSES FROM OOP SYSTEMS WITH SOM 55

problems can be approached: defect detection [2] [21], cost estimation [13], re-
quirements analysis [8], software maintenance [9], test oracles [28], maintaining
legacy systems [29].

The focus of this paper is a less popular, yet challenging software engineer-
ing problem: detecting the key classes from a software system for automatic
diagram construction. From a machine learning perspective, we have a data
set containing OOP classes and the goal is to classify them in groups of relevant
and non-relevant ones. The relevant (key) classes are meant to be represented
on the UML diagrams while the classes with lowest scores are ignored.

Self Organizing Maps (SOM) have been previously used for software analysis
and visualization but was never applied to the class detection problem before.
The paper is structured as follows: the first chapter presents the basics of
Self Organizing Maps. In the second section we review some related articles
of the domain. Then, the key detection problem and its applications are
highlighted. The fourth chapter deals with our methodology for resolving
this problem, where we describe the steps of our approach, beginning with
data representation and visualization and continuing with SOM algorithm
and its transformation in a hybrid method for classification purposes. The
experimental setting and the performance results are presented in the fifth
chapter, followed by the concluding remarks section.

1. Self Organizing Maps

The SOM algorithm was developed in the 1980’s by Professor Teuvo Koho-
nen [11]. SOM are presented as special unsupervised neural networks. Their
main purpose is to create a low dimensional representation of the input space
of the training data. This representation forms a map of neurons where they
compete and organize themselves in such a way that the topological proper-
ties of the input space is preserved. This means that if two instances from the
input space are close to each other, they will be near each other in the map,
too. Only one neuron is activated at any time (the winning neuron), because
of the competition process which induce inhibitory connections.

The SOM algorithm is inspired from the neural cortex of the brain. Different
sensors (motor, visual, auditory) are mapped in certain areas of the cortex.
They form a map (topographic map), where each piece of input information is
stored in its neighbourhood and where neurons responsible with closely related
pieces of information is kept close together so that they can communicate fast
via short synapses. The location of a neuron in a SOM corresponds to a
particular instance from the input space [11].

The architecture of SOM is fairly simple. The Kohonen map has a feed-
forward structure with an input layer and a computational layer with neurons

56 ELENA-MANUELA MANOLE

arranged in a matrix. Each neuron is connected to all nodes from the input
layer. The number of input units is equal to the number of dimensions from
the input space. In the training phase, the map is built using the input data.
Then, a new input instance can be automatically classified using the mapping
phase, by matching it to its nearest neuron.

Figure 1. SOM architecture

The main components of any self organizing map are:

• Initialization phase: The connection weights of each neuron j from
the computational layer, wj = (wj1, wj2, ..., wjD) are initialized at
random.

• Competition: For each input instance, the distance between the
input vector: x = (x1, x2, ..., xD) and the weight vector:

wj = (wj1, wj2, ..., wjD) is computed as: d2j (x) =
∑D

i=1(xi − wji)
2,

if we use the Euclidean distance. Other distances can be used as
well. The neuron with the smallest distance from the input instance
becomes the winning neuron or the Best Matching Unit (BMU).

• Cooperation: Now, the winning neuron influences the other neigh-
boring neurons, by signaling them. The neurons which are closer to
the BMU are excited more than the neurons which are far away. For
this, we define a topological neighborhood function, which decays
with distance: Tj,I(x) = exp(−S2

j,I(x)/2σ
2), where Sij is the distance

between neurons i and j and I(x) is the index of the winning neu-
ron. σ is a time dependence, for example the exponential decay:
σ(t) = σ0exp(−t/τσ)

• Adaption: In this phase, the weights of the BMU and its neigh-
bors are updated. The excited neurons are moved closer to the data
point, by adjusting the associated connection weights. The BMU is
modified by a greater amount than the neighboring neurons. The
update rule is: ∆wji = η(t) × Tj,I(x)(t) × (xi − wji) , where η is the
learning rate, defined as: η(t) = η0exp(−t/τη).

DETECTING THE KEY CLASSES FROM OOP SYSTEMS WITH SOM 57

The steps from above are repeated for a predefined number of iterations or
until there are not significant changes in the map organization.

As stated before, SOM is usually used for visualisation purposes. An idea
is to simply draw the matrix of neurons according to their positions from the
map. Each neuron is equivalent with a reduced representation of an input
instance (or of a group of instances). Another common technique is to rep-
resent a matrix of distances (called U-Matrix) between the weight vectors of
adjacent neurons. The matrix is coloured with values of different intensities.
Lighter colour between two neurons denotes a small distance, while a darker
colour denotes a large distance. Figure 2 is an example of a U-matrix. The
black dots denote the neurons.

Figure 2. SOM U-Matrix

The U-matrix is useful especially for cluster analysis. The dark areas in
the map are interpreted as boundaries between the clusters of the underlying
data.

The neurons from the map are activated with various frequencies. Some
neurons are activated multiple times, others are activated just once, others are
never activated. To see the overall distribution of activated neurons, activation
frequency map can be used.

2. Related work

In this section we give a brief overview of SOM models used for software
engineering problems.

Czibula et al. [17] [3] discuss about software restructuring and refactoring
via clustering with SOM. In their experiments, SOM was able to distinguish
clusters and proved to be effective for visualization purposes. Even though the
U-matrix can be used to identify the boundaries between clusters, it is argued
that its interpretation is a matter of subjectivity. To overcome the need of a
reliable clustering tool, their key-idea was to apply a hierarchical clustering
algorithm on the trained units.

58 ELENA-MANUELA MANOLE

SOM is also effective for defect prediction, as proposed in [16]. The goal is
to detect two clusters, one containing non-defective entities and another one
containing defects. An analysis is performed by observing the U-matrix and
the boundaries of high distances. The results showed a good performance of
SOM in terms of the Area Under The Receiver Operator Characteristic Curve
(AUC) and quantization error.

Another very interesting approach for default prediction is studying a hybrid
SOM in a semi-supervised manner described by Abaei [1]. The technique is
suited when we face a limited amount of defect data. The algorithm has several
phases. Firstly, SOM is trained and an initial clustering is performed. Then,
the neurons from the map that are not activated are removed from the system.
The weights of the remaining (activated) neurons are assigned to labels, based
on some thresholds given by certain software measurements. These weights
are fed to a neural network for further training. It has been observed that
the neurons of SOM tend to resemble the input data as they move towards it.
Using some thresholds to stop the neurons from approaching too close to the
input patterns is a justified heuristic.

In terms of visualization and analysis of software engineering data, the re-
search conducted by MacDonell [14] presents a range of situations in which one
would benefit from SOM. One application involves clustering software arte-
facts in groups with low, medium and high defect counts. The clusters can
be interogated for statistics purposes. Another useful application is building
component maps, depicting the distribution of one software metric per map.
Groups with similar values for the analyzed metric are detected (similar num-
ber of attributes per class, the depth in the inheritance tree, the number of
child classes, the number of lines per code). The visualization with SOM re-
veals useful information about the distribution of artefacts. Pedrycz et al. [23]
analyses the Linguist open source Java project in terms of software metrics.
Besides, in [22] they identified relationships between classes, for example, one
cluster will contain classes having a specific keyword, or specific type (helper
classes, error handling classes, interfaces, etc.). Some patterns between the
software metrics were identified as well.

3. Key class detection and condensing class diagrams

The problem that we study can be found in the literature with various
names: detecting class importance, condensing reversed engineering class dia-
grams or key class detection. We dedicate this separate chapter to review the
existing approaches of the domain.

Detecting key classes using an automatic approach can be an interesting re-
search topic and has several applications: condensing reversed-engineered class

DETECTING THE KEY CLASSES FROM OOP SYSTEMS WITH SOM 59

diagrams [19] [27], helping program comprehension, analyzing design evolution
[7], prediction of future changes [31], recommending potentially relevant files
that the developer should view (easy navigation) [25] and others.

Although several existing Computer Aided Software Engineering tools can
be configured to remove several properties in a class diagrams, they are unable
to automatically identify classes that are less important [19]. Some experimen-
tal research showed that developers experience more difficulties in finding the
information they need in reverse engineered diagrams and also find the level
of detail in ”forward” designed ones more appropriate [5].

What makes a class important? There is a research debate about what
are the attributes which determine the relevance of a class. It is claimed
that an important class represents a key concept that is usually found in the
documentation and that has a higher degree of control within the application.
This control can be measured, for example, by identifying the tightly coupled
classes. The software can be also seen as a network, where classes are vertices
and the dependencies between them are edges. A class which is used by
many other classes is a good candidate to be an important one, representing a
fundamental information or business model. Also, a class which is using other
important classes may be an important one as well.

The topic can also be treated subjectively because different groups of devel-
opers could define sets of different sizes with key classes. The key class should
respect the level of detail that the developer wants to deal with.

Another issue we may face when implementing an automatic key detection
system is the imbalanced data. In a real world system, only a few classes are
used to document the architectural design. For instance, the developers of
Tomcat 5.5 thought that only six classes would be enough to represent the
important concepts of the system. Nevertheless, there are many other classes
that can be included, if a developer wants to see a more detailed view.

There are a few automatic approaches in the literature for this problem.
An interesting article by S, ora [18] describes the importance of a class by the
amount and types of interactions it has with other classes. The approach is
based on an graph ranking algorithm based on Page Rank in order to model the
dependencies of the system. Vale and Maia [4] use Trace Extractor which is a
tool that saves files with invocation trees for each triggered concurrent thread
in the studied program. These trees are used to compute the importance of
the involved classes. The algorithm has a tree compression phase to remove
identical parts, then a phase which classifies the subtrees as relevant and non
relevant. This was done with a Naive Bayes classifier. The final step is to
identify the key classes from the subtrees by considering some of the roots as
the important classes (or the subtree can further split and assessed).

60 ELENA-MANUELA MANOLE

Osman [19] and Thung [27] solved the problem of condensing reversed en-
gineering class diagrams by identifying only the important classes. They em-
ployed supervised methods, among which random forest was the best perform-
ing one. Later, they proposed an optimistic classification strategy for dealing
with data points with unknown label. To our knowledge, they did not study
SOM, so in this research we guide our experiments towards this unexplored
direction. In Section 4 we use their research as reference for the approaches
documented in the present article.

We found one unsupervised approach with K-means [30] and ensemble learn-
ing using the same data sets and we mention its performance as well.

4. Methodology

This chapter presents our approach of SOM for classification, which is quite
unusual for this type of machine learning model. The idea is to separate the
key classes from the less important ones via a modified SOM. We propose two
types of algorithms: a majority voting technique on the trained map units and
hybrid approach combining SOM with a classic neural networks.

4.1. Input data. For this research we employ the same data sets and pre-
processing strategy from Osman [19] and Thung [27]. They prepared and
published nine data sets, each representing a different open-source software
project. Obviously, the instances are in fact OOP classes represented as nu-
meric feature vectors. The label is denoted by the last column of the data set,
called ”In Design”, which tells whether the current instance appears or not on
the design UML diagram of the project. The nine projects are described in
Table 1.

The features that characterize the instances are in fact the values for differ-
ent software metrics associated with the underlying class. Generally speaking,
software measures refer to quantifiable and scalar descriptions of properties of
software artefacts [22].

Osman and Thung focused their work on finding metrics serving the goal
to distinguish the classes that represent important concepts for the UML di-
agram.

In one of their earliest studies [19], they chose a set of 11 metrics, called
”design metrics”, which are well known measures that can be found in any soft-
ware engineering article: the number of attributes, the number of operations,
getters and setters, or various types of dependencies with other classes and
coupling measures. The authors conducted a survey [20] about class diagram
comprehension which revealed that the metrics related to size and coupling
are preferred among developers. The second argument was that coupling is
an important structural element in object oriented systems.

DETECTING THE KEY CLASSES FROM OOP SYSTEMS WITH SOM 61

Project Description
Total

Classes

Classes In
Design

Diagram

ArgoUML UML diagramming application 903 44

JGAP
A framework for performing genetic algorithms and

genetic programming
171 18

JPMC
A collection of automated intelligent agents in financial

sector
121 24

JavaClient A framework for developing robotics applications 214 57

Mars
An application for creating simulation of possible human

settlement on Mars
840 29

Maze An application for solving maze puzzles 59 28
Neuroph A framework for developing neural network architectures 161 24
Wro4J An application for optimizing web resources 87 11

xUML
A software for producing executable and testable

systems from specified data models and associated state
machines

84 37

Table 1. The datasets [27]

Later, they addressed a new question: How can we represent the relation-
ships between classes from a new perspective in order to assess class impor-
tance? This led to the concept of network metrics, which greatly improved
the accuracy of the existing models [27]. The software project is seen as a
network in which the nodes represent the classes and the edges denote the
relationships between them (aggregation, composition, generalization and de-
pendency). Based on this graph, a series of 10 metrics were computed. Among
them, we mention: Barycenter Centrality- sum of shortest distances of node v
to all other nodes, Betweenness Centrality - number of shortest paths between
all possible pairs of other nodes that go through node v, Closeness Centrality
- the mean shortest distance of node v to all the other nodes, Page Rank-
suggesting that nodes with more incoming links are more important. Besides
these, some custom metrics based on the partial known knowledge are defined:
the proportion of known important classes among the neighbours of a class,
the shortest distance to known important classes, neighbour existence, etc.
The need for these last metrics is that in real scenarios, the amount of labeled
data is limited.

The full description of the data sets and the feature extraction can be found
in [19] and [27], together with download information.

4.2. Data Visualization. Before presenting the classification algorithms, we
take advantage of the visualization capabilities of SOM to investigate the data
distribution and if any clusters can be already observed.

Figure 3 presents the maps with the activated neurons for two of the
datasets: JavaClient and xUML. Each neuron that was activated at least once,
was the BMU (Best Matching Unit) for at least one data point, which means
that the neuron can be seen as the reduced representation of that data point.

62 ELENA-MANUELA MANOLE

Figure 3. Map of activated neurons for JavaClient(left) and XUML(right)

Figure 4. U-Matrix for JavaClient(left) and XUML(right)

We illustrate the trained map with the neurons coloured as pie charts, denoting
the proportion of positive instances (key classes) and negative instances (non-
important classes). The positive instances are marked with orange, while the
negative ones are blue. We observe that positive ones are grouped together,
with a few exceptions. Also, the neurons which are closer to the ”centre” of the
cluster are homogeneous, while the ones closer to the boundaries between the
clusters are more mixed: they contain both positive and negative instances.

The U-matrix (Figure 4) can also provide insightful information. With light
blue, small distances between neighbouring neurons are represented, while the
dark blue stands for large distances between the neurons. The scale on the

DETECTING THE KEY CLASSES FROM OOP SYSTEMS WITH SOM 63

right side of the map depicts the distances. We label again the associated data
points for each neuron. The orange circles represent the positive instances,
the blue squares are the negative ones. Again, we observe the neurons with
overlapping symbols - which map both positive and negative instances are
closer to the cluster boundaries (dark regions).

Overall, for visualisation purposes and dimensionality reduction, we are
satisfied with what SOM achieved. The data is separated in groups, but
we would like to know exactly which information is encoded in the neurons.
Labelling every neuron with the name of the classes they represent may provide
some insight. In Figure 5 and Figure 6 we discover the following: each neuron
(or neighbourhood of neurons) tends to map classes with the same kind of
responsibility or belonging to the same package. Thus, it would be interesting
to study other types of software metrics specific to the key class detection
problem and assess if they improve the partitioning. We are not discouraged
by these findings because the partitioning by design diagram classes is still a
satisfactory one, as it can be observed on the coloured maps.

Figure 5. Insight of JavaClient Project with SOM

We present a ”zoomed in” map representation where we mark some of the
groups that we found: interfaces, controllers, factories, etc. JavaClient is an
application in robotics. We observe on the map groups of classes responsible

64 ELENA-MANUELA MANOLE

Figure 6. Insight of XUML Project with SOM

for the player position and controls. XUML is an application for building exe-
cutable systems from data models and state machines, so in the corresponding
map we find components associated to notions such as classes, attributes, pa-
rameters, associations, or events. For this project, the map units seem better
separated by the ”In Design” label.

4.3. Classification with SOM - A Majority Voting Approach. As dis-
cussed in previous chapters, we consider the classes that are on the design
diagram as instances from the positive class, and all the others are in the
negative class. The current section explains a probabilistic classification algo-
rithm for the trained map units. An unseen data point is assigned to a class
by using a type of majority voting. In the literature, other such techniques
have been successfully applied for SOM [26], [12].

The algorithm from our own approach has the following steps:
Training the SOM
The first step is nothing else than building the map for the data set. A

classical SOM is trained, similar to the one from Section 4.2. The result is
a map of trained neurons, which have learned to represent the input data.
On the map we find neurons which were activated at least once: they are the
best matching unit for at least one input data point. There are also neurons
that were never activated, these ones will be ignored in the next steps and we

DETECTING THE KEY CLASSES FROM OOP SYSTEMS WITH SOM 65

will call them dead neurons (similar to the approach presented in [1]. Dead
neurons help their neighbours perform better in training process; however,
they are no longer needed after the SOM algorithm is finished.

Build statistics for the trained neurons
Each neuron from the trained map is now analysed. For every unit j, we

compute the probability of positive and negative instances that have as best
matching unit the neuron j. This is similar to the pie chart mapping from
section 4.2. The formulas are the simple probability computations, defined as
follows:

Ppos(j) =
number of positive instances

total number of mapped instances

Pneg(j) =
number of negative instances

total number of mapped instances
= 1 − Ppos(j)

Classification
When an unseen instance is going to be classified, it is presented to the

trained SOM, which will try to compute the best matching unit for it. There
are two cases:

1. The BMU is an activated neuron from the training phase. This means
that the percent of positive and negative instances mapped so far by the neuron
is known, and we have a good chance that the new instance will belong to the
majority class, too.

2. The BMU was not activated in the training phase. This means that
no information is available to be able to distinguish if the instance is positive
or negative. In this case, we determine the top n closest neurons that were
activated and compute the probabilities among them. The reason why we do
not choose the closest neighbour is that one single BMU may not reflect the
entire neighbourhood. For example, the closest neuron may show a probability
of 100% negative, but the rest of the neighbouring neurons may encode only
positive instances.

To be observed that this approach remains unsupervised. In the training
phase, no information about the actual labels is used when the unit weights
are updated. The probabilities are computed after the training has finished
and no weights are updated for neurons which are mixed.

4.4. Classification with SOM - Adding supervised layers. The second
technique is a hybrid approach that combines the SOM with a few traditional
neural network layers. The technique is inspired and adapted from [24], in
which the authors add one additional layer to the SOM.

For this study, two more layers are added to the classical SOM, which will
be responsible with the classification. Some existing approaches use the label

66 ELENA-MANUELA MANOLE

information during the SOM training to update the weights, or augment the
input vectors with the label information [10], [15]. The present approach is
different because it keeps the SOM independent of the label information. As
a result, only the additional layers will update their neurons’ weights to learn
the classification. The SOM organization remains intact. The reason is that
we want to preserve the unsupervised and competitive characteristics of the
SOM learning step.

The architecture of the proposed system has two components.
SOM component
The first component is the SOM which is trained in the classical unsuper-

vised manner. After the SOM units are organized, we use forward connections
to bind them to the additional supervised layers.

In order to be fed forward, the SOM units need to use an activation function.
For this, we use the Gaussian similarity, so the activation of the unit j of the
SOM map has the following formula:

aj = e
−d2j (x)

2σ2

where d2j (x) is the distance between the unit j and the input data x and σ
is the width of the Gaussian.

Additional layers
The second component is responsible for learning to perform classification,

and consists of the two additional neuron layers.
One of the layers is fully connected to the SOM units and is using ReLU

activation. The output of a neuron l from this layer is:

ol = ReLU(
∑
j

wjl × aj + biasl)

where wjl is the connection weight between the neuron l and SOM unit j
and ReLU is the Rectified Linear Unit activation function computed as:

ReLU(x) = max(0, x)

The other layer is the output layer, which has a single neuron connected to
the previous ReLU units. This neuron uses sigmoid activation to output the
probability of the positive class. The sigmoid function is a common choice for
binary classification and has the following formula:

sigmoid(x) =
1

1 + e−x

To train the two layers, cross entropy loss function is used with gradient
descent. The cross entropy cost is popular among state of the art models. It

DETECTING THE KEY CLASSES FROM OOP SYSTEMS WITH SOM 67

is preferred in [24] and [6] as it leads to faster convergence and to better local
optimum than the squared error function. The cross entropy formula for the
binary classification is:

C(y, o) = −ylog(o) + (1 − y)log(1 − o)],

where y denotes the true label and o is the prediction.

4.5. A comparison between the two approaches. The common part of
the two proposed algorithm consists of the unsupervised SOM component.
Both strategies are meant to transform SOM for classification tasks.

The majority voting strategy operates on the trained units, by associating
simple probabilities to each unit based on the labels of the instances mapped
to each neuron. The classification is performed using these probabilities.

The second strategy is in fact a hybrid algorithm, combining two ML mod-
els: SOM and neural networks. The classification step is more complex than
the aforementioned technique, because it requires learning. The unsupervised
SOM units are fed to the neural network which will perform supervised train-
ing.

The two architectures are presented side by side in Figure 7.

Figure 7.
Comparison between the proposed models: SOM with majority voting (left)

and SOM with additional layers (right)

68 ELENA-MANUELA MANOLE

5. Experimental Settings and Performance Results

In the following, the two proposed classification algorithms are evaluated for
the key class detection problem. Besides, we explain the experimental settings
involved in our study.

5.1. Experimental Settings. To implement the SOM, we used the MiniSom
Python library. For the majority voting algorithm, we extended MiniSom with
custom methods where necessary. For the additional neural layers we used the
Keras library. The connections between the SOM and the rest of the layers
have been implemented from scratch.

For the SOM component we used a traditional rectangular map topology.
We performed some tests with a hexagonal topology which brought no signif-
icant improvement, therefore we decided not to include it.

Regarding the algorithm based on majority voting, our experiments showed
that a map of 5x5 or 7x7 neurons is sufficient for the smaller data sets. For
the larger ones we discovered that we need a map with the size around 20x20.
The number of neighbours n used to classify unseen instances mapped to a
dead BMU was set to 5 by default.

In the second model, the number of neurons on the additional layer con-
nected to the SOM was set to 2/3 of the size of the SOM map. In addition, a
dropout strategy from Keras is used on this layer.

Because the data sets are imbalanced, leave one out validation is the chosen
strategy. In this way, the training set contains as many positive instances as
possible. Moreover, each and every data instance is used once for testing. For
the supervised component, a strategy for initializing the bias of the output
layer was used:

b = log(positive instances/negative instances)

To help the training even more, the classes are weighted, telling the model
to pay more attention to the positive class, which has a greater weight :

weight0 = (1/negative instances) ∗ (total instances/2)

weight1 = (1/positive instances) ∗ (total instances/2)

The performance will be assessed in terms of the AUC. There are two moti-
vations for using this measure. Firstly, AUC is preferred for highly imbalanced
data because it does not favour models that predict the majority label for all
data points. Secondly, this metric was also used by Osman and Thung [19] [27],
so reporting the same performance measure will help comparing the models.

DETECTING THE KEY CLASSES FROM OOP SYSTEMS WITH SOM 69

However, some scientists claim that AUC should not be used when comparing
one model to another and should only be used to determine if a ML model is
better than random guessing. In absence of any other performance measures
for the approach by Thung et al [27], we can only rely on the AUC score.
Their experiment is performed in Weka, and computes the AUC with the help
of a function from the same library.

To evaluate SOM for our novel approach, the scikit-learn library for perfor-
mance metrics was used. For the AUC we applied the roc auc score function
which determines the AUC based on the prediction scores. The implementa-
tion uses Riemann integrals for approximating the area under the ROC curve.
The thresholds on the curve are also computed automatically by this function.
Besides, we also calculated the precision and recall scores. To be noted that
the AUC relies on the class probabilities, while for the precision and recall, the
predictions are transformed in discrete labels. A default probability thresh-
old of 0.5 was used (the predictions with probabilities greater than 0.5 are
considered positive). In a real application, the developers should adjust this
threshold, based on the level of detail they prefer for the generated diagram.

5.2. Results Analysis. Osman [19] and Thung [27] conducted various re-
search in the domain, with performance ranging from 0.60 to 0.90 (AUC), but
we compare our results with their best performance on each data set. More-
over, we also mention the results obtained by the K-means approach employed
by Yang et al. [30].

The final performance results are presented in Table 2 and Table 3. Our
methods are compared to the random forest optimistic classifier from Thung et
al [27] (Baseline 1) and to the K-means approach with ensembles [30] (Baseline
2). Despite the fact that the average AUC is slightly lower than the Baseline
1, SOM achieved better results on some of the datasets. Particularly for
xUML project, an outstanding 0.95 AUC was obtained. Compared to the K-
means approach, our results are significantly better. However, their study has
advantages as well, employing a strategy which requires only a small amount
of labelled data.

In general, our approach with additional layers is better than the majority
voting one. The surprise was for the Wro4J project which was very difficult for
the neural network, but outperformed the literature with the majority voting
strategy.

The greatest challenge remains the highly imbalanced data sets. Also, the
precision of the neural network is quite low, while the recall is significantly
higher. This means that most of relevant classes were successfully retrieved,
but the model tends to consider many false positives as well. This could be
slightly adjusted by tuning the classification probability threshold.

70 ELENA-MANUELA MANOLE

Project Baseline 1 [27] Baseline 2 [30] SOM & maj voting SOM & supervised layers

ArgoUML 0.757 0.658 0.71 0.73
JGAP 0.797 0.835 0.67 0.77
JPMC 0.813 0.553 0.76 0.78

JavaClient 0.862 0.774 0.88 0.89
Mars 0.845 0.776 0.76 0.83
Maze 0.767 0.584 0.65 0.61

Neuroph 0.915 0.894 0.88 0.88
Wro4J 0.763 0.680 0.79 0.74
xUML 0.905 0.814 0.94 0.95

Average 0.825 0.730 0.78 0.80

Table 2. AUC achieved by our SOM-based techniques compared
to other existing models

Project SOM & maj voting SOM & supervised layers
Precision Recall Precision Recall

ArgoUML 0.42 0.25 0.14 0.64
JGAP 0.36 0.28 0.23 0.72
JPMC 0.54 0.54 0.52 0.50

JavaClient 0.71 0.81 0.70 0.80
Mars 0.23 0.21 0.13 0.65
Maze 0.74 0.52 0.54 0.78

Neuroph 0.50 0.58 0.47 0.63
Wro4J 0.55 0.55 0.33 0.73
xUML 0.78 0.84 0.92 0.87

Average 0.54 0.51 0.44 0.70

Table 3. Precision And Recall obtained with SOM

6. Concluding Remarks and Further Improvements

This study has proved that SOM is a good challenger for the common
classification algorithms. We conclude that it is not only a versatile tool for
learning and visualization, but also extensible for different ML tasks.

In general, the software engineering tasks are challenging to tackle from a
machine learning perspective, and the problem presented in this research is
not an exception. With the help of the Self Organizing Maps, the distribution
of the data can be assessed, as well as the relevance of the features that were
used to represent it. In the future, it would be interesting to research for other
software metrics that would better reflect the degree of importance of a class
within a OOP system, but any study related to software measures is a research
topic on its own.

The SOM algorithm applied on the important classes detection problem
was able to converge quite fast to an acceptable map representation. Also, the
majority voting strategy achieved a satisfactory performance for classification,
despite its simplicity. The additional neural network did not need many layers
and neurons, as we found that one hidden layer (besides SOM map) and a
single neuron for the output is enough to learn the classifier. By adding a

DETECTING THE KEY CLASSES FROM OOP SYSTEMS WITH SOM 71

few more layers, the model is prone to achieve even better results if properly
tuned.

Other classification strategies based on SOM are worth exploring. There
is the possibility to transform SOM in a completely supervised algorithm, by
adjusting the map weights based on the label information and loss function,
but for this article the choice was to keep the map organization unchanged.

On a practical note, the purpose of search-based software engineering is to
find automatic solutions for everyday tasks. Therefore, a possible application
would be to develop an IDEE plugin which integrates the ML model to gen-
erate automatic condensed diagrams. In this way, the developers can have a
quick initial summary, so that the time spent understanding and navigating
through a new project is reduced.

References

[1] Abaei, G., Selamat, A., and Fujita, H. An empirical study based on semi-supervised
hybrid self-organizing map for software fault prediction. Know.-Based Syst. 74, 1 (Jan.
2015), 28–39.

[2] Ceylan, E., Kutlubay, F. O., and Bener, A. B. Software defect identification using
machine learning techniques. In 32nd EUROMICRO Conference on Software Engineer-
ing and Advanced Applications (EUROMICRO’06) (2006), pp. 240–247.

[3] Czibula, G., and Czibula, I. Unsupervised restructuring of object-oriented software
systems using self-organizing feature maps. International Journal of Innovative Com-
puting, Information and Control 8 (03 2012).

[4] do Nascimento Vale, L., and de Almeida Maia, M. Key classes in object-oriented
systems: Detection and assessment. International Journal of Software Engineering and
Knowledge Engineering 29, 10 (2019), 1439–1463.

[5] Fernández-Sáez, A. M., Genero, M., Chaudron, M. R., Caivano, D., and
Ramos, I. Are forward designed or reverse-engineered UML diagrams more helpful
for code maintenance?: A family of experiments. Information and Software Technology
57 (2015), 644 – 663.

[6] Golik, P., Doetsch, P., and Ney, H. Cross-entropy vs. squared error training: a
theoretical and experimental comparison. In INTERSPEECH (2013).

[7] Hammad, M., Collard, M. L., and Maletic, J. I. Measuring class importance in
the context of design evolution. 2010 IEEE 18th International Conference on Program
Comprehension (2010), 148–151.

[8] Iqbal, T., Elahidoost, P., and Lucio, L. A bird’s eye view on requirements engineer-
ing and machine learning. In 2018 25th Asia-Pacific Software Engineering Conference
(APSEC) (12 2018).

[9] Jha, S., Kumar, R., Son, L., Priyadarshini, I., Sharma, R., Long, H., and
Abdel-Basset, M. Deep learning approach for software maintainability metrics pre-
diction. IEEE Access PP (04 2019), 1–1.

[10] Kohonen, T. The ’neural’ phonetic typewriter. Computer 21, 3 (1988), 11–22.
[11] Kohonen, T. The self-organizing map. Proceedings of the IEEE 78, 9 (1990), 1464–

1480.

72 ELENA-MANUELA MANOLE

[12] Lau, K., Yin, H., and Hubbard, S. Kernel self-organising maps for classification.
Neurocomputing 69 (10 2006), 2033–2040.

[13] Lin, J.-C. Automatically estimating software effort and cost using computing intelli-
gence technique. Computer Science & Information Technology 2 (10 2012), 381–392.

[14] MacDonell, S. G. Visualization and analysis of software engineering data using self-
organizing maps. In 2005 International Symposium on Empirical Software Engineering,
2005. (2005), pp. 10 pp.–.

[15] Mattos, C., and Barreto, G. Artie and muscle models: building ensemble classifiers
from fuzzy art and som networks. Neural Computing and Applications 22 (01 2013),
49–61.

[16] Onet-Marian, Z., Czibula, I., Czibula, G., and Sotoc, S. Software defect detec-
tion using self-organizing maps. Studia Universitatis Babes,-Bolyai Informatica LX (01
2015), 55–69.

[17] Onet-Marian, Z., Czibula, I.-G., and Czibula, G. A hierarchical clustering-based
approach for software restructuring at the package level. 2017 19th International Sym-
posium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC) (09
2017), 239–246.

[18] S, ora, I. Helping progran comprehension of large software systems by identifying their
most important classes. In ENASE (Department of Computer and Software Engineering
University Politehnica of Timisoara, Romania, 2015).

[19] Osman, M. H., Chaudron, M. R. V., and v. d. Putten, P. An analysis of ma-
chine learning algorithms for condensing reverse engineered class diagrams. 2013 IEEE
International Conference on Software Maintenance (2013), 140–149.

[20] Osman, M. H., Zadelhoff, A., and Chaudron, M. UML class diagram simplifica-
tion: A survey for improving reverse engineered class diagram comprehension. Empirical
Studies on the Effects of Modeling in Software Development (01 2013), 291–296.

[21] Paramshetti, P., and Phalke, D. Survey on software defect prediction using machine
learning techniques. International Journal of Science and Research (IJSR) 3, 12 (2014).

[22] Pedrycz, W., Succi, G., Musilek, P., and Bai, X. Using self-organizing maps to
analyze object-oriented software measures. Journal of Systems and Software 59 (10
2001), 65–82.

[23] Pedrycz, W., Succi, G., Reformat, M., Musilek, P., and Bai, X. Self organizing
maps as a tool for software analysis. Canadian Conference on Electrical and Computer
Engineering 1 (02 2001), 93 – 97 vol.1.

[24] Platon, L., Zehraoui, F., and Tahi, F. Self-organizing maps with supervised layer.
12th International Workshop on Self-Organizing Maps and Learning Vector Quantiza-
tion, Clustering and Data Visualization (WSOM) (06 2017), 1–8.

[25] Singer, J., Elves, R., and Storey, M.-A. Navtracks: supporting navigation in
software maintenance. IEEE International Conference on Software Maintenance, ICSM
2005 (10 2005), 325 – 334.

[26] Sousa, R., Rocha Neto, A., Cardoso, J., and Barreto, G. Robust classification
with reject option using the self-organizing map. Neural Computing and Applications
26 (01 2015).

[27] Thung, F., Lo, D., Osman, M. H., and Chaudron, M. R. V. Condensing class dia-
grams by analyzing design and network metrics using optimistic classification. Proceed-
ings of the 22nd International Conference on Program Comprehension (2014), 110–121.

[28] Vanmali, M., Last, M., and Kandel, A. Using a neural network in the software
testing process. Int. J. Intell. Syst. 17 (01 2002), 45–62.

DETECTING THE KEY CLASSES FROM OOP SYSTEMS WITH SOM 73

[29] Wiggerts, T. Using clustering algorithms in legacy systems remodularization. In Pro-
ceedings of the Fourth Working Conference on Reverse Engineering (1997), pp. 33–43.

[30] Yang, X., Lo, D., Xia, X., and Sun, J. Condensing class diagrams with minimal
manual labeling cost. In Proceedings - 2016 IEEE 40th Annual Computer Software and
Applications Conference, COMPSAC 2016 (United States of America, 2016), vol. 1,
IEEE, Institute of Electrical and Electronics Engineers, pp. 22–31. International Com-
puter Software and Applications Conference 2016, COMPSAC 2016 ; Conference date:
10-06-2016 Through 14-06-2016.

[31] Zimmermann, T., Weisgerber, P., Diehl, S., and Zeller, A. Mining version his-
tories to guide software changes. Proceedings of the 26th International Conference on
Software Engineering (2004), 563–572.

Department of Computer Science, Faculty of Mathematics and Computer Sci-
ence, Babes, -Bolyai University, 1 Kogălniceanu St., 400084 Cluj-Napoca, Roma-
nia

Email address: meic2001@scs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXVI, Number 1, 2021
DOI: 10.24193/subbi.2021.1.05

RETINAL BLOOD VESSEL SEGMENTATION ON

STYLE-AUGMENTED IMAGES

MARCELL DÁVID TÓTH AND ATTILA KISS

Abstract. The average human lifespan increased dramatically in the sec-
ond half of 20th century. It was mainly due to technological improvements,
which were driven by the continuous war preparations, and while humans
have got another 20 years to live, unfortunately there are some sad side ef-
fects added to the elderly life. Various diseases can attack the eye, our ma-
jor organ responsible for receiving information, therefore many researches
were devoted to examine these diseases, their early signs, and how could
they be stopped. From the start of 21th century, methods aided by com-
puter were more and more involved in these processes, up to the current
trend of using Convolutional Neural Networks (CNNs). While supervised
methods, CNNs do achieve accuracy which can be compared to a skilled
ophtalmologist, they require a tremendous amount of labeled data which is
sparse in medical fields because the amount of time and resources needed
to create them. One natural solution is to augment the data present, that
is, copying the distribution while adding a small variety, like coloring an
image differently. That is, what our paper aims to explore, whether a tex-
turing algorithm, the Neural Style Transfery can be used to make a data
set richer, and therefore helping a classifier CNN to achieve better results.

1. Introduction

The eye is one of the most important parts of the human body as the ma-
jority amount of information gained by perceiving the world around us. Sadly,
there are numerous diseases could threaten this organ, and many of them do
not result in immediate loss of eyesight, but damage the tissues and other
parts of the eye over a long period of time. These diseases are more common
among the elderly, and as average lifespan increased in the 20th century, they

Received by the editors: 4 December 2020.
2010 Mathematics Subject Classification. 68U10, 68T01, 92B20.
1998 CR Categories and Descriptors. I.4.6 [I.2 Image Processing and Computer

Vision]: Segmentation – Region, partitioning ; I.5.1 [Pattern Recognition]: Models –
Neural Nets.

Key words and phrases. Medical Image Processing, Retinal Blood Vessel Segmentation,
Neural Style Transfer.

74

RETINAL BLOOD VESSEL SEGMENTATION ON STYLE-AUGMENTED IMAGES 75

became more relevant to combat. Such disease is diabetic retinopathy (DR),
which are the leading cause of blindness in developed countries, according to
the World Health Organization (WHO).

On the bright side, there are number of indicators of DR, which can suggest
early treatments, that slow down or even halt vision loss. These signs can
detected during dilated fundus examination by screening the retina with a
fundus camera, gaining information about the retina, blood vessels, etc.

This is done with fluorescein angiography : a small amount of sodium fluo-
rescent dye is given to the patient orally or via injection. Then the retina gets
illuminated with blue light, and green light reflected back by the dye reveals
the blood vessels. Although the method is known to be reliable and accurate,
it can cause side effects, such as nausea or anaphylaxis.

To offer an alternative solution which is more comfortable for the patients,
researches began in search of blood vessel segmentation methods on retinal im-
ages. The task is to create a classifier algorithm, which, upon seeing a fundus
image, accurately labels each pixel as vessel or non-vessel. To be reliable, such
algorithms require a huge amount of training examples with ground truth
labelling, as the classifier’s parameters need to be set. Unfortunately, seg-
mented fundus images are expensive and time consuming to produce, because
the process to create one involves trained ophthalmologists.

The area of data augmentation deals with the problem of lacking data in
quantity. A natural solution is to create new images using certain transfor-
mations on the original ones: color enhancing, whitening, adding noise, etc.
These transformations preserve spatial attributes, therefore the new image has
the same segmentation as its origin. Also, there are some other techniques,
such as cropping, rotation or flipping the images, executing the same on the
segmented image.

After this introduction, our paper will go as follows: in the next two sections,
we will give a short description of the already known supervised methods for
segmenting retinal images, and also, we will introduce Neural Style Transfer
(NST) algorithm, emphasizing it as a data augmentation technique. In section
4, we will go through our experiment of using NST to create fundus images,
the results and conclusions will be presented in section 5 afterwards.

2. Related works

2.1. Segmentation methods. The area of retinal blood vessel segmentation
is rich in researches, from the late 80’s until today. The very first methods were
rule-based, which means that certain areas were marked as vessel, if pixels in
it had a common property, followed a shape, etc. Later on superwised methods

76 TÓTH AND KISS

took a major role, with trained classifiers achieving accuracy over 90% and
more.

Such one rule based method was matched filtering, dating back to, where
researchers discovered that the cross section of a blood vessel follows the shape
of a Gauss-curve, speaking of grayscale pixel intensity value. While being easy
to interpret, this method achieved good results in 1989 [2], and was improved
later, see papers [1, 19]. An other rule based method features Multi-Scale Line
Detection, which builds upon an even more simple observation: blood vessels
are made of linear segments piecewise [12].

With Neural Networks (NN) became popular in the last decade, more and
more works were devoted to explore their abilities in the topic of discussion.
Maŕın et al. [11] used a small, 3-layer deep NN feeded with 7-dimensional
feature vectors to measure the probability of a pixel being blood vessel in the
image. The 7 features consist the local average, minimal, maximal and center
intensities, as well as variance and Hu-moments.

We follow the work of [18], details explained along our paper. For a thorough
review, look up [4].

2.2. Neural Style Transfer. While seemingly confusing to mention here,
NST has its relevance in our topic. The idea to create artistic images with the
aid of a computer is not new, but the first truly successful attempt was only in
2016 by Gatys et al. [5, 6]. Since then, more than a hundred research papers
were dedicated to explore the capabilities of the method. For a thorough
review until the near end of 2018, look up paper [8].

The goal of NST is to create an image, given a content image and a style
image, with the restriction that the result has to have the similar semantic
information (what we actually see on the image) as the content and also sim-
ilar textures (colors, shapes, etc.) as the style. The original NST, that we
used, is an image optimisation technique, which means that the algorithm
starts from an initial white-noise or the content image, and in each iteration
small adjustments are done to match content and style respectively. Without
delaying further, the original NST can be described the following way, picture
[1] attached:

(1) The core is made of a pretrained deep neural network. Newer frame-
works exploit the capabilities of the VGG19 because its success on
image recognition tasks [17], that it can already classify images into
a vast number of categories.

As an image is passing through the network, the responses of the
kernels are accumulated in feature maps for each layer. The deeper
the layer we are currently examining, its feature maps contain the
more and more complex information about the image. The user must

RETINAL BLOOD VESSEL SEGMENTATION ON STYLE-AUGMENTED IMAGES 77

Figure 1. An illustration of the Neural Style Transfer algo-
rithm framework with the VGG16 network, originally used by
Gatys et al.

choose a few layers to get these inner representations as outputs, with
many guidelines had already been made to choose certain groups
for perceptually pleasant results: one content representation layer is
chosen in deeper sections, and multiple layers are chosen across the
network for representing style.

(2) Let us denote the content representation feature maps by P 1, . . . , P l,
with the same indexing on the result, let it be F 1, . . . , F l. The differ-
ence between actual contents is expressed as the L2 distance of the
feature maps, the sum of the element-wise difference squared. This
is simply written here as:

Lcontent =

l∑
i=1

(F i − P i)2

In our work, we chose only the block5 conv2 convolutional layer for
content representation in the VGG19 network.

(3) Style matching is done in a slightly different way. For both style and
result image, their Gram-matrices are calculated from features maps,
denoted by A1, . . . , Al and G1, . . . , Gl. These matrices represent cor-
relation between features on an arbitrary image, therefore the task

78 TÓTH AND KISS

is to pull these correlations closer feature-wise:

Lstyle =

l∑
i=1

(Gi −Ai)2

It is worth noting that since its 2016, this way of representing
style came through many refinements. Consider reading paper [10]
for a better understanding on style matching, and papers [15, 7] for
additional techniques like color-histogram matching and total vari-
ation loss. In our work, we chose the first convolutional layer from
each block: block1 conv1, . . . , block5 conv1.

(4) The total loss is weighted sum of the two previously defined losses:

Ltotal = αLcontent + βLstyle
With respect to the pixel values of the result image as variables,

Ltotal is differentiable, therefore optimal intensities can be calculated
via back-propagation.

* We must also mention, that improvements were also done to speed
up the work of NST, see paper [9].

Surprisingly, NST was not a subject of researches related to direct data aug-
mentation until the end of 2019. The first experiment was to measure, if NST
can improve a classifier’s performance by creating stylised images, therefore
the training dataset will have more variance, see paper [20] for further details.
In 2020, NST was also used in medical fields for dermatological data augmen-
tation, with the same motivations there as mentioned in the introduction, see
paper [13].

3. Proposed Method

Our hypothesis is that a sufficiently used NST can be used to synthesize
retina images with style to gain more variance, and therefore a classifier trained
on the augmented data would be more robust to outliers, creating less false
positives. To test this, we executed the following plan:

(1) In the beginning, we use the original 20 DRIVE images [3] to mea-
sure the performance of the classifying Convolutional Neural Network
(CNN). The results we are mainly looking to improve is specifity and
training time, see section 5 for explaining evaluation metrics.

(2) We create stylized images with the NST algorithm. For getting de-
sirable results, one must address many properties of the algorithm:
losses and respective weights, the way of representing style, etc. In
the end, we will have 20 times the number of styles images.

RETINAL BLOOD VESSEL SEGMENTATION ON STYLE-AUGMENTED IMAGES 79

(3) The CNN is re-trained, but now on the augmented dataset, and we
compare the two classifier’s performances.

4. Experiment

4.1. Used frameworks. The CNN we used in our experiment, called Retina
U-net, was implemented by Orobix, resources can be found at [14]. The idea
of the U-network was first presented in paper [16], with the motivation to
create encode-decoder framework for medical image processing. The network
in subject could be marked as a tiny U-net, as its size does not even approach
the one presented in the original, having only ≈ 470.000 parameters.

The network processes retinal images in patches with size 48× 48 pixel, en-
codes them in convolution-dropout-convolution-maxpooling manner, and de-
codes with upsampling in the end of the same structure, convolution-dropout-
convolution-upsampling. All convolutions are 3× 3, dropout layers were used
with 0.2 probability. In the beginning we start with 32 kernels and double
the numbers after each maxpooling, up to 128, and halving after upsampling,
back to 32. We used the Adam optimizer to train the network, with no final
activation and Binary Cross-Entropy loss functions.

The predicted images were thresholded to gain binary images, this cut-off
was set in the interval [0.15; 0.25] after multiple trials.

Retinal images were obtained from the DRIVE database. The database
consists of 40 fundus images, 20 for training and 20 for testing purposes, each
given with a manually segmented blood vessel map, as well as an image mask
that separates the background. Each image has the size of 584× 565 pixel.

In the beginning, we measured the stand-alone performance of the Retina
U-net by training it on 10.000 patches (500 extracted randomly from each
image, see pictures 2) and evaluating it later on the test patches. Test patches
were obtained by first expanding the test images to the size of 624× 576, and
then making 13× 12 regular patch cuts.

Figure 2. Patches extracted from retinal images

80 TÓTH AND KISS

After initial result, we now turn to use the NST algorithm. We chose 3 style
images: Composition VII from Wassily Kandinsky, Starry Night from Vincent
van Gogh and The Great Wave Off Kanagawa from Hokusai, see pictures 3.
The content and style loss weights were chosen 10−6 and 10−3 respectively and
optimization process were executed also with Adam on the VGG19 network.

Figure 3. Used styles

After stylization, the same patch extraction-training-evaluation procedure
was executed, see the results in the next section and examples of stylized retina
in the appendix.

Upon applying the transformation to the training set, the difference shift in
colors was measured in the fundamental way: calculating the mean and stan-
dard deviation for each color channel. This is due to get insights, expectations
before going through the classification process again:

Looking at the values, what first thing that meets the eye is that for each
transformed image, the mean values are much more regular, are closer to each

Table 1. Average value and standard deviation of colors
among the training images, compared with the augmented ones
(scaling from 0 to 255)

R G B

Original
181.89 97.78 57.37
45.19 28.57 17.26

Composition

VII

153.99 119.57 98.93
23.00 19.12 15.97

Great Wave
145.10 118.12 104.28
21.15 17.25 15.92

Starry Night
154.81 115.62 97.14
23.41 19.00 17.48

RETINAL BLOOD VESSEL SEGMENTATION ON STYLE-AUGMENTED IMAGES 81

other in contrast to the original training set: the red values decreased by
about 30/255 = 11.76%, while the green and blue channel values increased
by roughly 20/255 = 7.84% and 40/255 = 15.68%. While this means shift
occurs, each channel’s standard deviation interval shrank to [−25, 25]. This
will be presented with images in the appendix, but this means, that the same
content, the blood vessels, must be extracted from the new, augmented images,
which are more homogeneous in color, therefore the new CNN has to be more
sensitive to small changes in order to perform well.

5. Results and discussion

5.1. Statistical measures used. The final results we calculated follow the
traditional evaluation metrics and statistics used in image segmentation. Upon
getting the model predictions, a usual thresholding scheme is used to obtain
binarized images. These images were matched with their corresponding ground
truth segmentation, and all four class scores are calculated: True positives
(TP), True Negatives (TN), False Positives (FP) and False Negatives (FN).
After this, the following measures were used:

(1) Accuracy (ACC): the overall performance of classifying a seen pixel
correctly. While being a widely used measure, ACC has its limita-
tions and can be misleading in cases, for example when the label set
imbalanced.

ACC =
TP + TN

TP + TN + FP + FN

(2) Sensitivity (true positive rate, SENS) and Specificity (true negative
rate, SPEC): both measures the percentage of misclassification in
vessel and non-vessel cases respectively. High SENS can be inter-
preted that the classifier pays attention to small details, that is, it
can find tiny vessels, while high SPEC means that it is robust enough
not to be distracted with noise.

SENS =
TP

TP + FN
SPEC =

TN

TN + FP

(3) Balanced Accuracy (BACC): makes up for the imbalanced cases,
where ACC is misleading, commonly said as average true predictive
power.

BACC =
SENS + SPEC

2

(4) Precision (PREC): another measure for positive prediction ratio be-
sides SENS. In this case we compare true vessels pixels to those that

82 TÓTH AND KISS

are marked as vessel, and get a view about how well the algorithm
separates noise from blood vessels.

PREC =
TP

TP + FP

(5) Matthew’s Correlation Coefficient (MCC): while no single number
can capture a classifier’s performance, MCC is regarded to be one of
the best so far. It ranges between [−1; 1] with 1 perfect predictive
power, 0 meaning randomness and −1 meaning failure.

MCC =

=
√
PREC · SENS · SPEC ·NPREC

−
√

(1− PREC) · (1− SENS) · (1− SPEC) · (1−NPREC)

where NPREC is the negative class precision.

5.2. Evaluation and Discussion. The aformentioned final scores can be
seen in table 2, where we took the average in both cases.

We can see that the augmentation technique indeed helped to improve our
CNN’s classification power, with returning positive difference in almost each
category, except in SPEC. Although these results look promising with respect
to employing NST in retinal image augmentation, we want to mention that
this method seems far from done. We list some number of parameters that
need to be set correctly:

• The network used is an unexplored part of NST, but representions
do depend on that the underlying network previously learnt. Could
it be, that a network trained on retinal images could perform NST
better than the VGG-networks?
• Related to the previous, but a different network might need other lay-

ers to be chosen to represent content and style weights Lcontent,Lstyle
should be chosen accordingly as well.

Table 2. Scores on the original and the augmented dataset,
and respective differences (positive means improvement on the
augmented data)

ACC PREC SENS SPEC BACC MCC
Original Data 95.95 84.31 66.53 98.78 82.66 72.64

Augmented Data 96.49 84.44 74.17 98.65 86.41 77.09
Difference 0.53 0.13 7.63 -0.12 3.75 4.44

RETINAL BLOOD VESSEL SEGMENTATION ON STYLE-AUGMENTED IMAGES 83

• The concept of style loss are examined thoroughly in previous works
(e.g. histogram losses), and that is one thing could enhance a retinal
image augmenting NST.
• If we follow the patch-based strategy, then there might be a number

of patches, where creating synthesized images no longer affects the
classifier’s performance. Therefore, this image augmentation tech-
nique should be performed only when limited data is available.
• Additional metrics for measuring differences can be applied before

retraining the CNN, to get more insights. One can mention the
normalized cross-correlation, or measuring the euclidean distance of
feature maps on a normally trained U-net.

This concludes our work. We have seen that there are ways to deploy NST
in medical image processing and we are eager to see and continue with further
improvements.

6. Acknowledgments

The project has been supported by the European Union, co-financed by the
European Social Fund (EFOP-3.6.3-VEKOP-16-2017-00002).

References

[1] Al-Rawi, M., Qutaishat, M., and Arrar, M. An improved matched filter for blood
vessel detection of digital retinal images. Computers in biology and medicine 37, 2
(2007), 262–267.

[2] Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., and Goldbaum, M. De-
tection of blood vessels in retinal images using two-dimensional matched filters. IEEE
Transactions on medical imaging 8, 3 (1989), 263–269.

[3] Drive: Digital retinal images for vessel extraction. https://drive.grand-challenge.org/.
[4] Fraz, M. M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A. R.,

Owen, C. G., and Barman, S. A. Blood vessel segmentation methodologies in retinal
images–a survey. Computer methods and programs in biomedicine 108, 1 (2012), 407–
433.

[5] Gatys, L. A., Ecker, A. S., and Bethge, M. A neural algorithm of artistic style.
arXiv preprint arXiv:1508.06576 (2015).

[6] Gatys, L. A., Ecker, A. S., and Bethge, M. Image style transfer using convolutional
neural networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition (2016), pp. 2414–2423.

[7] Gatys, L. A., Ecker, A. S., Bethge, M., Hertzmann, A., and Shechtman, E.
Controlling perceptual factors in neural style transfer. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (2017), pp. 3985–3993.

[8] Jing, Y., Yang, Y., Feng, Z., Ye, J., Yu, Y., and Song, M. Neural style transfer:
A review. IEEE transactions on visualization and computer graphics (2019).

[9] Johnson, J., Alahi, A., and Fei-Fei, L. Perceptual losses for real-time style trans-
fer and super-resolution. In European conference on computer vision (2016), Springer,
pp. 694–711.

84 TÓTH AND KISS

[10] Li, Y., Wang, N., Liu, J., and Hou, X. Demystifying neural style transfer. arXiv
preprint arXiv:1701.01036 (2017).

[11] Maŕın, D., Aquino, A., Gegúndez-Arias, M. E., and Bravo, J. M. A new super-
vised method for blood vessel segmentation in retinal images by using gray-level and
moment invariants-based features. IEEE Transactions on medical imaging 30, 1 (2010),
146–158.

[12] Nguyen, U. T., Bhuiyan, A., Park, L. A., and Ramamohanarao, K. An effec-
tive retinal blood vessel segmentation method using multi-scale line detection. Pattern
recognition 46, 3 (2013), 703–715.

[13] Nýıri, T., and Kiss, A. Style transfer for dermatological data augmentation. In Pro-
ceedings of SAI Intelligent Systems Conference (2019), Springer, pp. 915–923.

[14] Orobix: Retina u-net. https://github.com/orobix/retina-unet.
[15] Risser, E., Wilmot, P., and Barnes, C. Stable and controllable neural texture

synthesis and style transfer using histogram losses. arXiv preprint arXiv:1701.08893
(2017).

[16] Ronneberger, O., Fischer, P., and Brox, T. U-net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical image comput-
ing and computer-assisted intervention (2015), Springer, pp. 234–241.

[17] Simonyan, K., and Zisserman, A. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014).

[18] Wang, C., Zhao, Z., Ren, Q., Xu, Y., and Yu, Y. Dense u-net based on patch-based
learning for retinal vessel segmentation. Entropy 21, 2 (2019), 168.

[19] Zhang, B., Zhang, L., Zhang, L., and Karray, F. Retinal vessel extraction by
matched filter with first-order derivative of gaussian. Computers in biology and medicine
40, 4 (2010), 438–445.

[20] Zheng, X., Chalasani, T., Ghosal, K., Lutz, S., and Smolic, A. Stada: Style
transfer as data augmentation. arXiv preprint arXiv:1909.01056 (2019).

RETINAL BLOOD VESSEL SEGMENTATION ON STYLE-AUGMENTED IMAGES 85

Appendix A

Figure 4. Retina images with corresponding stylization, from
left to right row-wise: original, Composition VII, Great Wave,
Starry Night

ELTE Eötvös Loránd University, Budapest, Hungary
Email address: p3kxga@inf.elte.hu

J. Selye University, Komárno, Slovakia
Email address: kissae@ujs.sk

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXVI, Number 1, 2021
DOI: 10.24193/subbi.2021.1.06

TEMPORAL DISCOUNTING FOR MULTIDIMENSIONAL

ECONOMIC AGENTS

FLORENTIN BOTA

Abstract. Individuals frequently place a higher value on money and
goods today than they would in the future. This is known as temporal
or time discounting, and most economic models include discount functions
to represent such utility over time.

In this paper we evaluated traditional models with experimental data
from the scientific literature and constructed our own samples for compar-
ison. In addition, we evaluated the prediction accuracy of the models and
proposed new hybrid solutions. Our investigation aims to contribute to a
better understanding of human nature in complex processes.

1. Introduction

We propose a new unified computational model that represents the human
decision-making process in complex systems, such as economy. The model is
created using a bottom-up, data-driven approach[5] and will provide an effec-
tive tool for developing realistic Multidimensional Economic Agents (MEA).
This paper focuses on the rational part of the model, where we analyze the
standard paradigm, specifically the time-preference or temporal discounting
phenomenon observed in economy.

Intertemporal choice is an elegant and simple economic theory introduced
by John Ray in 1834 and formulated by Irving Fisher (1930) [9, 25], who
created a model that includes an individual’s impatience, contrary to Keynes
(1936) [13], who emphasized on current income in relation with consumption.
In this model the consumers make time-based decisions to maximize their
lifetime satisfaction.

Figure 1 is a representation of intertemporal choice of the consumer sub-
ject to the utility preferences and the budget constraint. The indifference

Received by the editors: 3 April 2021.
2010 Mathematics Subject Classification. 68Q19, 91B44.
1998 CR Categories and Descriptors. J.4 [Computer Applications]: Social and Be-

havioral Sciences – Economics; I.6.4 [Computing Methodologies]: Simulation and Mod-
eling – Model Validation and Analysis .

Key words and phrases. economics, temporal discounting, intertemporal decisions.

86

TEMPORAL DISCOUNTING FOR MULTIDIMENSIONAL ECONOMIC AGENTS 87

Figure 1. Intertemporal choice exerted by the consumer

curves[19] (I1, I2...In) can be part of an indifference map and illustrate dif-
ferent bundles of goods between which a consumer is indifferent. There is an
infinity of indifference curves in microeconomic theory and in this case they
represent different utility levels. The slope of the indifference curve is the
marginal rate of substitution 1 of goods consumption in different time periods
(how many extra goods would you need to consume in t2 to give the same
level of utility if you consumed one in t1).

An interesting concept of this model is that we can consume now money
that we make in the future by borrowing that amount. The graph is a model
of saving and consumption with the interest rate of r over time periods (C1, C2

represent consumption over periods of time and Yt represents income for time
t). The consumer will have to maximize utility U(C1, C2) but under the con-
straint represented below:

(1) C1 + C2/(1 + r) = Y1 + Y2/(1 + r)

Human behavior is inherently difficult to model, due to the dynamic in-
teractions that can be observed between agents. However, experimental data
shows that there are (unwritten) social rules that can be used to model human
reactions in some environments[1].

In this paper I will discuss the existing discount functions and our new
proposed hybrid models. We conducted our own experiment for sample data

1The marginal rate of substitution (MRS) represents the rate at which economic agents
will substitute one good for another while maintaining the same utility .

88 FLORENTIN BOTA

and tested the proposed functions. The findings showed better results and a
good contribution to our multidimensional economic agent.

The remainder of the article is structured as follows. Section 2 is focused
on the concept of temporal discounting and other related papers. Section
3 will cover current experiments from the scientific literature and the zero-
shot capability of GPT-3 regarding time preference. Section 4 describes our
proposed functions and the methodology we employed, then in Section 5 we
will examine the results. Section 6 presents our conclusions and directions for
future research.

2. Background

2.1. Temporal discounting. Temporal discounting (delay discounting, time
preference) refers to the observed phenomenon where agents value the same
good differently based on the time of consumption. Certainly, a good can be
any product that is desired and provides utility2 to a consumer.

There are many models that represent temporal discounting or time pref-
erence. The models are simplified mathematical versions of discounting in a
complex system and are used to explain, analyze and predict behavior and
interactions of economic agents. Several differences between the models exist,
specifically between the discount functions and we will present some of the
most used variations.

The model we presented earlier assumes that the consumers make choices
by discounting the present value of their consumption and income exponen-
tially into the future, using the same interest rate. In other words, in ideal
markets, both firms and individuals borrow or lend until their marginal rate of
substitution between consumption today and consumption tomorrow equals
the interest rate [25, 12].

Before continuing to mathematical formulae of the function, we should ex-
plain several important economic terms for those without an economic back-
ground. The discount factor, let’s call it δ, is the amount a future value must
be multiplied with in order to get the present value and can be defined with
the formula

(2) δ =
1

1 + ρ

We can extract the discount rate as

2In economics, utility is a measure of the total satisfaction received from consuming a
good or a service. It was introduced by Daniel Bernoulli in 1738

TEMPORAL DISCOUNTING FOR MULTIDIMENSIONAL ECONOMIC AGENTS 89

(3) ρ =
1− δ

δ
The discount rate ρ refers to the interest rate used in discounting. More

intuitive examples can be found in the fourth chapter of Behavioral Economics
by Edward Cartwright (2011) [7] or in the scientific literature in general. A
more general equation for future cash flows is:

(4) PV = FV ∗ 1

(1 + r)n

where PV = Present Value, FV = Future Value, Discount Factor = 1
(1+r)n ,

n = time and r = discount rate

2.2. Exponential discounting. Exponential discounting is a very simple
way to model choice over time and is by far the most common way used
in economics, because of it’s simplicity. The standard economic model of ex-
ponential discounting was proposed by Samuelson in 1937[23] and the general
formula is:

(5) fE(D) = e−kD

where f(D) is the discount factor, D is the delay and k is a parameter which
determines the rate at which value decreases with the time delay. A larger k
can be associated with a steeper discounting of the value of a future reward[11].

We can define total utility in this case by:

(6) uT =

T∑
t=1

δt−1ut

where ut is the utility in time t, and δ is the exponential discount factor. We
can rewrite that in continuous time as:

(7) uT =

∫ T

0
e−ρtut

In Figure 2a we plotted the exponential discount function for different values
of δ. The top line is the theoretical limit where no discounting occurs.

There are several anomalies in this model[17], recognized even by Samuelson[23]
when he proposed the DU model. He stressed that “it is completely arbitrary
to assume that the individual behaves so as to maximize an integral of the
form envisaged in (7)”

One of the most prominent anomalies is the constant rate of discount as-
sumption. Empirical evidence suggests that discount rates fall over time. We

90 FLORENTIN BOTA

can prove the constant rate by calculating the change in discounting over two
consecutive periods of time:

(8)
D(t)

D(t− 1)
=

δt

δt−1
= δ

We can observe the constant factors in Figure 2b.

(a) Exponential discount
function δt versus t

(b) Annual discount factor

(per-period), eln(fE(t))/t

Figure 2. Temporal discounting

2.3. Hyperbolic discounting. With the exponential discount function we
assumed a constant discount factor δ and “discount rate”[21] ρ so that:

(9) δt = δt =

(
1

1 + ρ

)t

Much of the empirical data from both humans and animals contradicts the
predictions of exponential discounting [10]. An alternative notion of hyperbolic
discounting was developed by psychologists (Ainslie, 1975; Chung & Herrn-
stein, 1967; Herrnstein, 1981; Rachlin, 1970), and Mazur (1987) formalized
the current standard hyperbolic model [24]:

(10) V =
A

1 + kt

where k is a discounting parameter that scales the degree of preference for
immediate rewards. Hyperbolic discounting corresponds to simple interest[22].

TEMPORAL DISCOUNTING FOR MULTIDIMENSIONAL ECONOMIC AGENTS 91

Hyperbolic discounting also permits time-inconsistency. For example you may
agree to wait an year and a month for a larger cash prize instead of taking
a smaller prize after an year, but you might change your mind after an year
and take the money. The Mazur hyperbolic discounting model was initially
developed to describe pigeon data and tends to “overpredict subjective value
at shorter delays, while underpredicting it at longer delays” [16].

Several researchers have modified his model by adding more parameters to
better fit the data. Rachlin (2006) added an exponent σ to the time delay,
which allows a more flexible relationship between value and delay:

(11) V =
A

1 + ktσ

2.4. Quasi-Hyperbolic discounting. The ”quasi-hyperbolic” discount func-
tion, proposed by Laibson (1997) [14] as the ”Golden Eggs” model assumes
that demand follows profits, and it illustrates why consumers have asset-
specific marginal consumption propensities. According to the model, financial
creativity may be to blame for the continuing downturn in US savings rates.

(12) fQH(D) = β × δD

3. Experiments and related work

3.1. Thaler experiment. Thaler [25] conducted a study where he asked re-
spondents to state an amount that would be equivalent to receiving $15 now.
The time periods were one month, one year and ten years. The average re-
sponse was $20 for one month, $50 for one year and $100 for 10 years (We
can calculate the corresponding annual discount rates (R): 345%, 120% and
19%)[10]. The same pattern was found by Uri Benzion, Amnon Rapoport,
and Joseph Yagil (1989), Gretchen B. Chapman (1996), Chapman and Arthur
S. Elstein (1995), John L. Pender (1996), Daniel N. Heller (1993), Stevens,
Jeffrey R. (2016).

We used:

(13) R =
ln(FV

PV)

t
[∗100]

where R is the annual discount rate in percentage, FV is the future value, PV
is the present value and t is the time period.

The rates were calculated using compound interest with continuous com-
pounding: FV = PV ∗ eRt, where R is the decimal equivalent of the rate of
interest expressed as a percentage and t represents time.

92 FLORENTIN BOTA

The e constant was discovered by Jacob Bernoulli in 1683 by studying com-
pound interest. The problem was as follows: “An account starts with $1 and
pays 100 percent interest per year. If the interest is credited once, at the end
of the year, the value of the account at year-end will be $2. What happens if
the interest is computed and credited more frequently during the year?”

Bernoulli noticed that with continuous compounding the account value will
reach $2.7182818....

3.2. Benzion et al. experiment. Another anomaly is the magnitude of
payoff effect. The model implicitly assumes that an individual’s rate of dis-
count is independent of the size or magnitude of a payoff. Once again, the
empirical studies suggests that individuals discount less when faced with larger
payoffs. Benzion, Rapoport and Yagil (1989) examined this aspect by varying
the amount of money ($40, $200, $1000, $5000) and the time periods (0.5,1 2
and 4 years). They found in all scenarios that the discount rates decrease as
the amount of money increases (0.228, 0.18, 0.16, 0.123 for a two year period).
In Figure 3, the inferred discount rate is :

(14) R = (F/P)1/t − 1

Figure 3. Discount rate - Benzion et al.

In Figure 3 we plot the results of scenario A from Benzion et al. [2] (post-
pone a receipt), where a person has just earned $y for his or her work finan-
cially solid public institute. Instead of receiving the money, the person is told

TEMPORAL DISCOUNTING FOR MULTIDIMENSIONAL ECONOMIC AGENTS 93

that there is a temporary shortage of funds and is assured payment of another
amount of $y over t times periods from now.

If we take the raw average responses and calculate the discount factor
(DF = PV/FV), we can plot the results from Figure 4a. With that we
compute the annual discount factor from Figure 4b [7]. Figure 4b shows that
there is a short-term impatience (The discount factor is higher the longer they
had to wait) and an absolute magnitude effect (the larger the sum of money,
the larger the estimated discount factor).

(a) Amount discounted (b) Annual discount
factor

Figure 4. Benzion et al. experiment

Next find the best parameter δ from D(t) = δt that fits the experimental
data from Figure 4a. We plot the resulting exponential function in Figure 5.

3.3. Benzion and Yagil experiment. This experiment[3] conducted by
Benzion and Yagil reexamined the behavior of subjective discount rates across
several dimensions: financial scenario, time delay and the monetary sum of the
cash flow. They used subsamples of 105 subjects from undergraduates, grad-
uates and higher academic degree. The emerging pattern is similar with other
experimental data from literature: the discount rates are decreasing with the
time delay and the sum of the cash flow, and are higher for a postpone-a-receipt
scenario than for a postpone-a-payment scenario. We can observe their results
in Figure 6a, where the mean discount rates are plotted over time t. In their
survey they used a scenario A (postponing a receipt), scenario B(postponing
a payment), 3 time periods (0.5, 2 , 5 years) and 3 sum variations ($200, $600,
$5000)

Based on (14) we can determine the future discounted value:

(15) F = P (1 +R)T

94 FLORENTIN BOTA

Figure 5. Fitted exponential function - Benzion et al.

(a) Amount discounted (b) Annual discount factor

Figure 6. Uri Benzion and Joseph Yagil Experiment

where F is the future value of a cashflow, P is the present value, R represents
the discount rate and T the time period.

3.4. A general model of temporal discounting. Wouter and Samuel [4]
argued that certain behaviours like impulsivity are inexplicable with classic

TEMPORAL DISCOUNTING FOR MULTIDIMENSIONAL ECONOMIC AGENTS 95

models. As a result, psychological models of temporal discounting have now
effectively replaced classical economic theory.

This is consistent with our own results in Section 5 and represents a positive
context for our own proposed solution in Section 4.2.

In [4] they presented a brain-based discounting model that overcomes some
constraints, while retaining much of the practical structure of the hyperbolic
discount equation.

They used neuroscience-based theory to create a new model that accounts
for several well-known contextual effects, with a simplified discount function
seen in (16).

(16) Dτ = ωδτ1 + (1− ω)δτ2

where ω indicates the relative involvement of each system in a given decision
(McClure, Ericson et al.)[15]

3.5. GPT-3 Experiment. Generative Pre-trainer Transformer 3 (GPT-3) is
a language model developed by OpenAI[6], an artificial intelligence research
and deployment organization. The model uses historical values to forecast
future data (autoregressive) and is based on feed-forward neural networks.
GPT-3 is trained with 175 billion parameters, making it a state-of-the-art
language model and the largest one at its launch, in 2020. The previous
largest model was Microsoft’s Turing NLG, with 17 billion parameters, 10
times smaller than GPT-3[20].

Their scaled up approach significantly enhanced task-agnostic, few-shot
efficiency[6], competing with other state-of-the-art fine-tuning models[18].

Although this model is usually employed in NLP use cases, the generative
attribute with the options of zero-shot and few-shot learning make it a good
candidate for our experiment. I could not find any examples of such studies
in the literature being conducted so far.

We tested the standard GPT-3 model in making temporal choices by using
the OpenAI Playground and the Q&A preset with temperature set initially
to 0. Temperature is a parameter for stochastic values and controls the ran-
domness of the response. A value of 0 causes the engine to be deterministic,
which means it will always produce the same output for a given input text,
and a value of 1 causes the engine to take the most chances and use the most
imagination.

There are variations in this strategy and we noticed them right away. We
were able to communicate with the model using written English and receive
written answers as responses, equivalent to our human survey.

96 FLORENTIN BOTA

We used adapted questions from our survey, to make things easier for the
model. For example:

”Would you prefer $ 50 now or $ 500 in a year?”

The answers were formulated like this:

”I would prefer $ 50 now.”

Table 1. GPT-3 Q&A answers for temporal choices

Value now ($) In a year ($) Answer Temperature

50 500 ”I would prefer $ 50 now.” 0.0
50 5000 ”I would prefer $ 50 now.” 0.0
50 50000 ”I would prefer $ 50 now.” 0.0

We experimented with the model’s temperature parameter and quickly no-
ticed that the zero-shot version (no added training) always prefers the offered
non-zero value in the present, regardless of the future amount.

By training the model with several examples we are able to simulate more
human-like responses and this will be the main research for a future study in
our MEA project.

4. Methodology

In this section, we will discuss the approach we used to validate existing
models as well as the experiments we conducted to demonstrate the accuracy
of our proposed hybrid model.

We find an optimum δ for the exponential function and plot the results
in Figure 7. In the following sections we will also use this data to measure
predictive accuracy between the models and the experimental data.

4.1. The dataset. After our study of scientific literature, we were concerned
that most of the articles and experiments offered interpreted data with aver-
age discount rates and average responses. We wanted sample raw data with
original answers to get a better understanding of the topic.

Therefore we conducted a survey with students from Babes-Bolyai Univer-
sity of Cluj-Napoca and other participants from an on-line community (red-
dit). There were a total of 118 responses, with 52 respondents being computer
science undergraduate students and 66 online respondents from Europe and
USA. We used Google Forms as a survey tool, to gather the responses.
By using the template:

TEMPORAL DISCOUNTING FOR MULTIDIMENSIONAL ECONOMIC AGENTS 97

Figure 7. Fitted exponential function - Uri Benzion and
Joseph Yagil, 2002

Table 2. Sample survey answers

50$ 5000$

3 mo 6 mo 1 yr 2yr 4yr 3 mo 6 mo 1 yr 2yr 4yr

200 400 600 1000 2000 8000 10000 15000 20000 35000
75 100 300 500 1000 5999 7420 8499 9999 14000
60 75 100 200 400 6000 7500 8000 15000 25000
65 80 100 150 300 6000 6666 8000 10000 12500
100 300 1000 2000 5000 10000 10000 12000 15000 20000
75 100 300 500 1000 5200 5500 6000 7000 10000
52 54 56 60 70 5200 5500 6000 7000 8000
300 500 700 1000 2000 6000 8000 10000 15000 20000
55 60 80 130 300 5100 5500 6000 7000 8000

You are indifferent to Y$ now vs X $ in t years. Write the
X amount below

98 FLORENTIN BOTA

we questioned the subjects to state indifference for receiving money over 6
months, 1 year, 2 years and 4 years periods. The money amount varied ($50
and $5000). We can observe a sample set with the answers in Table 2 below.

We specifically asked the following question:

“You have a bank savings plan which just achieved maturity
and the bank manger offers you the choice to invest again
in another similar savings plan but with a different matu-
rity time. What amount of money would make you COM-
PLETELY indifferent about receiving the relevant sum to-
day or receiving a larger sum in the future?”

Based on the results in Table 2 we calculated the discount factors, which
can be seen in Figure 8.

(a) Amount discounted (b) Annual discount factor

Figure 8. Discounted values in our experiment

As compared to older experimental evidence discussed in this paper, the
findings show some variations, but they are are consistent with more recent
research [8].

4.2. Proposed functions. In this context, we suggest two new functions
that can be thought of as hybrids of existing, simplified models. We believe
that by using multiple parameters, they can conform better to modern human
behaviour, particularly given the anomalies we discovered in the literature.

Equation (17) describes Hybrid Exponential-Hyperbolic discount func-
tion:

(17) hybEH(x) =
δx

1 + (α× x)

TEMPORAL DISCOUNTING FOR MULTIDIMENSIONAL ECONOMIC AGENTS 99

and equation (18) describes theHybrid Quasi-Exponential-Hyperbolic
discount function.

(18) hybQEH(x) = β × δx

1 + (α× x)

In these functions, δ is the discount factor and α represents the discounting
parameter that scales the degree of desire for instant gratification, with β
being used to capture present-time bias. In our experiments, the parameters
are estimated using the ordinary least squares (OLS) method.

Figure 9. Annual discount factor, function comparison

Figure 11 shows a comparison of current approaches and our suggested
hybrid functions for the annual discount factor.

We can observe similarities between the quasi-exponential-hyperbolic func-
tion and quasi-hyperbolic, and between exponential-hyperbolic with the hy-
perbolic discount function. As shown in the following section, the variations
are important in our analysis.

100 FLORENTIN BOTA

Figure 10. Fitted exponential function, using survey data

5. Results

We can observe the discount factors in Figure 10, where we fitted the expo-
nential discount function to our data. The outcome shows a 95.17% accuracy
for the 50$ discount and 91.15% for the 5000$ questions.

This suggests that the exponential discount function doesn’t fit well on our
experimental values, relative to the experiments of Benzion et al. in Figure
5. We believe this is due to the participants’ lack of economic awareness or to
inconsistencies in the model compared to our results. It also provides us with
an ideal setting for testing the models in a real-world situation where data is
sparse or uncertain.

A sample of the answers from our survey can be observed in Table 2. We
tested all multiple functions on our survey data and the results can be observed
in Table 3.

The visual representation can be seen in Figure 11, where our hybrid func-
tions performed very well, with 99.39 % accuracy for Quasi-Exponential-
Hyperbolic and 98.65 % accuracy for Exponential-Hyperbolic.

The standard model of exponential discounting did the worst, with 89.02
%, which is consistent with other examples in the recent literature [4] [8].

TEMPORAL DISCOUNTING FOR MULTIDIMENSIONAL ECONOMIC AGENTS 101

Figure 11. Accuracy on real data (average)

Table 3. Accuracy results for our experimental data

Discount function ACC

Hybrid Quasi-Exponential-Hyperbolic 99.39 %
Hybrid Exponential-Hyperbolic 98.65 %
Quasi-Hyperbolic 96.24 %
Hyperbolic 96.07 %
Exponential 89.02 %

6. Conclusions and further work

In this article, we provided an analysis of the temporal discounting phe-
nomena found in economic processes. Using studies from the literature, we
evaluated existing discount functions and proposed new hybrid solutions based
on our own experimental data.

102 FLORENTIN BOTA

Our proposed functions performed well and we determined very good results
for the Quasi-Exponential-Hyperbolic function, with up to 99.39% accuracy.

According to our findings, the standard functions performed well on older
data sets and struggled to model behavior on newer data, while our proposed
solutions show a very good potential to model consumers constraining their
own future choices.

We also obtained intriguing results with zero-shot and GPT-3 learning in
the form of inter-temporal preference (always accepting the present value), yet
further investigation is required.

This paper represents an important phase in our MEA[5] research, in which
we developed a theoretical model that can be used to simulate and forecast
human actions in complex scenarios.

Further work will include a more in-depth analysis on few-shot learning
models such as GPT-3 and their ability to simulate inter-temporal choices.

References

[1] Alahi, A., Ramanathan, V., Goel, K., Robicquet, A., Sadeghian, A.A., Fei-Fei, L.,
Savarese, S.: Chapter 9 - learning to predict human behavior in crowded scenes. In:
Murino, V., Cristani, M., Shah, S., Savarese, S. (eds.) Group and Crowd Behavior for
Computer Vision, pp. 183–207. Academic Press (2017)

[2] Benzion, U., Rapoport, A., Yagil, J.: Discount rates inferred from decisions: An exper-
imental study. Management science 35(3), 270–284 (1989)

[3] Benzion, U., Yagil, J.: Decisions in financial economics: An experimental study of
discount rates. Advances in Financial Economics 7, 19–40 (2002)

[4] Van den Bos, W., McClure, S.M.: Towards a general model of temporal discounting.
Journal of the experimental analysis of behavior 99(1), 58–73 (2013)

[5] Bota, F., Simian, D.: Embedding human behavior using multidimensional economic
agents. In: Simian, D., Stoica, L.F. (eds.) Modelling and Development of Intelligent
Systems. pp. 3–19. Springer International Publishing, Cham (2021)

[6] Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan,
A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners.
arXiv preprint arXiv:2005.14165 (2020)

[7] Cartwright, E.: Behavioral economics, vol. 22. Routledge (2014)
[8] Esopo, K., Mellow, D., Thomas, C., Uckat, H., Abraham, J., Jain, P., Jang, C., Otis,

N., Riis-Vestergaard, M., Starcev, A., et al.: Measuring self-efficacy, executive function,
and temporal discounting in kenya. Behaviour Research and Therapy 101, 30–45 (2018)

[9] Fisher, I.: The theory of interest. New York 43 (1930)
[10] Frederick, S., Loewenstein, G., O’donoghue, T.: Time discounting and time preference:

A critical review. Journal of economic literature 40(2), 351–401 (2002)
[11] Green, L., Myerson, J.: Exponential versus hyperbolic discounting of delayed outcomes:

Risk and waiting time. American Zoologist 36(4), 496–505 (1996)
[12] Keller, L.R., Strazzera, E.: Examining predictive accuracy among discounting models.

Journal of Risk and Uncertainty 24(2), 143–160 (2002)
[13] Keynes, J.M.: General theory of employment, interest and money. Atlantic Publishers

& Dist (2007)

TEMPORAL DISCOUNTING FOR MULTIDIMENSIONAL ECONOMIC AGENTS 103

[14] Laibson, D.: Golden eggs and hyperbolic discounting. The Quarterly Journal of Eco-
nomics 112(2), 443–478 (1997)

[15] McClure, S.M., Ericson, K.M., Laibson, D.I., Loewenstein, G., Cohen, J.D.: Time
discounting for primary rewards. Journal of neuroscience 27(21), 5796–5804 (2007)

[16] McKerchar, T.L., Green, L., Myerson, J., Pickford, T.S., Hill, J.C., Stout, S.C.: A
comparison of four models of delay discounting in humans. Behavioural processes 81(2),
256–259 (2009)

[17] Musau, A.: Modeling alternatives to exponential discounting (2009)
[18] Nagabandi, A., Kahn, G., Fearing, R.S., Levine, S.: Neural network dynamics for

model-based deep reinforcement learning with model-free fine-tuning. In: 2018 IEEE
International Conference on Robotics and Automation (ICRA). pp. 7559–7566. IEEE
(2018)

[19] Pareto, V.: Manuale di economia politica con una introduzione alla scienza sociale
(manual of political economy). Milano: Societa Editrice Libraria (1919)

[20] Rajbhandari, S., Rasley, J., Ruwase, O., He, Y.: Zero: Memory optimizations toward
training trillion parameter models. In: SC20: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis. pp. 1–16. IEEE (2020)

[21] Rasmusen, E., et al.: Some common confusions about hyperbolic discounting. In: Work-
ing Paper (2008)

[22] Read, D.: Intertemporal choice. Blackwell handbook of judgment and decision making
pp. 424–443 (2004)

[23] Samuelson, P.A.: A note on measurement of utility. The Review of Economic Studies
4(2), 155–161 (1937)

[24] Stevens, J.R.: Intertemporal similarity: Discounting as a last resort. Journal of Behav-
ioral Decision Making 29(1), 12–24 (2016)

[25] Thaler, R.H.: Some empirical evidence on dynamic inconsistency. Quasi rational eco-
nomics 1, 127–136 (1981)

Department of Computer Science, Faculty of Mathematics and Computer Sci-
ence, Babes, -Bolyai University, 1 Kogălniceanu St., 400084 Cluj-Napoca, Roma-
nia

Email address: florentin.bota@ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXVI, Number 1, 2021
DOI: 10.24193/subbi.2021.1.07

LEADER ELECTION IN A CLUSTER USING ZOOKEEPER

MANUELA PETRESCU

Abstract. This paper presents an algorithm for flexible and fast leader
election in distributed systems using Apache Zookeeper for configuration
management.

The algorithm proposed in this paper is designed for applications that
do not use symmetric nodes so they need a specialized election process or
for applications that require a more flexible approach in the leader election
process. The algorithm proposes a different approach as it allows assigning
prioritizations for servers in the cluster that are candidates to become a
leader. The algorithm is flexible as it takes into consideration during the
leader election process of the different server settings and roles, network
properties, communication latency or specific application requirements.

1. INTRODUCTION

In general, distributed systems are designed to use symmetric nodes - all
nodes have similar roles or responsibilities. However there are situations where
a specific type of processing must be done on a single node, critical processes
or there are situations when it is more efficient to do the processing on a single
node at a time. In this case, in order to ensure a high degree of availability
in case there is a failure of the leader node, any other viable node from the
cluster can and should assume the leader role. So far, most election algorithms
focused on efficiency in terms of size of communication between nodes and
maximum latency until a leader is elected. Also, many algorithms assign a
uniform role to each node during the election procession as each node can vote
either for itself or for any other node, in general leading to a broadcast type
of communication until a leader is elected.

In this paper we propose a different approach, whereby using a third party
coordination tool we can complete the leader election in fewer steps but relying
on a temporary election node.

Received by the editors: 25 September 2020.
2010 Mathematics Subject Classification. 68U99.
1998 CR Categories and Descriptors. C.2.4 [Computer-Communication Network]:

Distributed Systems– Distributed applications;
Key words and phrases. leader election, algorithm, cluster, ZooKeeper.

104

LEADER ELECTION IN A CLUSTER USING ZOOKEEPER 105

Why another algorithm?
The algorithms running over ZooKeeper subject raise interest as the scien-

tific community is still trying to find a solution to improve their consistency
and performance, as recently presented papers prove. In ’Strong and Efficient
Consistency with Consistency-Aware Durability’ (2020), ORCA algorithm is
proposed[1]; ZabAA and ZabAC algorithms were proposed in [6]; ZabCT al-
gorithm in [7]. ORCA is presented as a modified version of ZooKeeper that
implements CAD (Consistency-aware Durability) and also cross-client mono-
tonic reads. There are experimentally results that suggest that ORCA pro-
vides strong consistency while closely matching the performance of weakly
consistent ZooKeeper[1]. The fact that a communication network latency in-
fluences the leader election process is treated in other research papers that
implemented a prototype algorithm based on ZooKeeper in order to emulate
wide area systems in which the transmission delays can have a huge impact
over the efficiency[4]. Other research proposes a model based on watchers in
ZooKeeper and define a watch as a trigger that causes an event to be dis-
patched to the client whenever the watched resource changes its state. Due
to the fact that the processes are asynchronous and as a consequence, the
network latency gives rise to multiple possible orderings of network messages;
so the model was improved in order to enable consistency [2,3]. Another pro-
posal for a leader election algorithm for replicated services that are based
on a leader, updates propagation and client request was POLE (Performance-
Oriented Leader Election)[5], the algorithm selects the leader depending on an
application specificity. The specificity can be defined as a metric, for example
the recovery time or request latency can be used. The Pole algorithm was eval-
uated using ZooKeeper and the results showed that just optimizing the latency
of consensus does not translate into lower latency for clients. An important
conclusion from our results is that obtaining a general strategy that satisfies
a wide range of requirements is difficult, which implies that configurability is
indispensable for practical leader election [5].

However, none of the above algorithms relate to applications that have apart
from generic constraints (server capacity, network latency), other constraints,
for example the new leader should belong to a cluster that is geographically
located in a different cluster from the previous leader. This behaviour differ-
entiates it from the other algorithms, thus, the proposed approach is generic
and flexible.

2. Apache Zookeeper

Zookeeper is an open source Apache project, which was designed as a ser-
vice that propagates changes in the distributed systems using an improved,

106 MANUELA PETRESCU

reliable and easy to understand method. It offers a centralized service that pro-
vides configuration management capabilities, naming information, distributed
synchronization, group services, configuration information and leader election
receipts over clusters in distributed systems [10,11,14].

2.1. Leader Election Process in Zookeeper.
As soon as a new leader is elected, it begins to serve the client’s requests.

Each client request contains a command with data to be applied to the state
machine. The leader appends the command to its log and begins the notifi-
cation process for the other servers. After the log entry from the leader was
replicated on the majority of servers, the leader applies the command in its
state machine. In fact, the entry is committed and the leader sends an ac-
knowledge message to the client and informs the other read replicas servers
(followers). When a follower receives the acknowledge message regarding a
committed entry, it updates its own state machine based on that message.
The inconsistencies that might appear between the leader’s log and the fol-
lower’s logs are solved by pushing the server’s log version to the follower’s log
versions [8,9]. The protocol used in case of network errors is that the leader
should try indefinitely to send messages to the followers. Data consistency is
guaranteed by timers usage, so the followers logs will contain only valid data
[12].

In the following we present some definitions related to Zookeeper [15]:

• znode - The basic data structure used by Zookeeper. It can con-
tain some data, additional z-nodes children and several attributes
(creation time, version number, so on.)

• zk-session - A standard TCP session established between the client
and the Zookeeper server. The Zookeeper server permanently mon-
itors the session for interruptions or timeouts by sending periodical
probes. If the client fails to respond within the configured time-
frame, a session may be expired and all the ephemeral z-nodes are au-
tomatically removed. A connection is established with any Zookeeper
node from the cluster. If the chosen node fails, the connection mi-
grates to another available node. This is transparent for the client.

• watches - A zookeeper client can configure various watches on se-
lected z-nodes so it is informed of any change happening on these
z-nodes.

LEADER ELECTION IN A CLUSTER USING ZOOKEEPER 107

2.2. Consistency guarantees. According to the specification [15], Zookeeper
provides the following consistency guarantees:

• ”Sequential Consistency : Updates from a client will be applied
in the order that they were sent.

• Atomicity : Updates either succeed or fail – there are no partial
results.

• Single System Image : A client will see the same view of the
service regardless of the server that it connects to. i.e., a client will
never see an older view of the system even if the client fails over to
a different server with the same session.

• Reliability : Once an update has been applied, it will persist from
that time forward until a client overwrites the update. This guaran-
tee has two corollaries:

– If a client gets a successful return code, the update will have been
applied. On some failures (communication errors, timeouts, etc)
the client will not know if the update has been applied or not.
We take steps to minimize the failures, but the guarantee is only
present with successful return codes.

– Any updates that are seen by the client, through a read request
or successful update, will never be rolled back when recovering
from server failures.

• Timeliness: The clients view of the system is guaranteed to be up-
to-date within a certain time bound (on the order of tens of seconds).
Either system changes will be seen by a client within this bound, or
the client will detect a service outage.”

By providing the above mentioned consistency guarantees Zookeeper can be
used to build higher-order primitives such as queues, locks, two-phase commit
protocols and leader elections for other solutions.

2.3. Leader election in ZooKeeper using SEQUENCE—EPHEMERAL
flags algorithm. In
ZooKeeper documentation, the proposed leader election algorithm is based on
the usage of two flags called SEQUENCE EPHEMERAL. The flags are used
when creating znodes that represent ”proposals” of clients. The ephemeral
znodes exist as long as the session that created the znodes is active; when
the session ends the ephemeral znodes are deleted. For the sequence znodes:
based on a request issued to Zookeeper when creating a z-node, Zookeeper can
append a monotonically increasing counter to the end of path. The appended
counter is unique to the parent znode [16].

108 MANUELA PETRESCU

The basic idea is to have a znode, named ”/election”, and that each zn-
ode creates a child znode ”/election/guid-n ” with both flags Sequence and
Ephemeral. The sequence flag is used to automatically append a sequence
number greater than any one number previously appended to a child of ”/elec-
tion”. The implications are that the process that created the znode having
the smallest appended sequence number is the leader node [13].

Additionally, the leader failure case must be treated in order to insure the
selection of a new node to become a leader. The simplest solution is to have
all application processes checking constantly the current smallest znode, and
in case the smallest znode is not replying checking if they should be the new
leader. However this approach causes an undesired effect as all the processes
receive a notification after the leader has failed, and they initiate the process
to obtain the current list of children nodes from ”/election”. The number of
the servers/znodes is directly proportional with the number of operations that
ZooKeeper servers have to process. The optimization used in order to avoid
this scenario is to check the next znode down on the znodes sequence. The
algorithm written in pseudocode is the following [13]:

Create znode z with path ”ELECTION/guid-n ” with both SEQUENCE and
EPHEMERAL flags;

Let C be the children of ”ELECTION”, and i be the sequence number of z;
Watch for changes on ”ELECTION/guid-n j”, where j is the largest se-

quence number such that j ¡ i and n j is a znode in C;
Upon receiving a notification of znode deletion:
Let C be the new set of children of ELECTION;
If z is the smallest node in C, then execute leader procedure;
Otherwise, watch for changes on ”ELECTION/guid-n j”, where j is the

largest sequence number such that j <i and n j is a znode in C;

Although we understand that this algorithm is just a basic example and it
was not designed to be used directly in production as is, we believe that it is
useful to analyse some of the shortcomings of this proposed algorithm and to
provide an improved alternative.

Based on our experience the algorithm proposed by Zookeeper team has the
following issues:

• No flexibility regarding leader election - the oldest node alive, with
the lowest sequence is always elected as leader.

• The fact that a leader is elected does not always translate into that
node actually becoming a leader. Depending on application the tran-
sition to leader status can be an elaborate process which may last

LEADER ELECTION IN A CLUSTER USING ZOOKEEPER 109

longer or it may fail. Only this transition has completed the leader
is actually active and this moment should be used to notify the other
nodes that the election process has been completed.

3. Algorithm description

As the previous paragraph detailed, most of the election algorithms in dis-
tributed systems were focused on efficiency in terms of size of communication
between nodes and maximum latency until a leader is elected. However the
efficiency in the election process does not guarantee the efficiency of the sys-
tem during the processing phase. Moreover, many algorithms assign a uniform
role to each node during the election process, the nodes are equals and each
node can vote either for itself or for any other node. This approach is leading
in general to a broadcast type of communication until a leader is elected. In
this paper we propose a different approach, in which the nodes are assigned
different priorities, their vote can have a different impact and weight. The
algorithm uses Zookeeper as a third party coordination tool; using this tool,
the leader election process can be completed using node’s predefined priorities
and can provide additional guarantees regarding the election process.

3.1. Node roles. Although, in general, all the nodes in the cluster can be
identical, they perform various roles during the operational lifetime.

• Election node - This node runs the election process.
• Leader node - This node performs some critical activity which must
be done on a single instance at a time.

These roles are dynamic and transitory, meaning that, in general, there is no
static configuration regarding which node is a leader or an elector node. Any
valid node can assume these roles.

3.2. Zookeeper data structure. In order to manage the cluster configura-
tion and the election process the algorithm uses three parent znodes:

• nodes - contains one ephemeral znode for each active node. Each
znode contains more detailed information about each cluster member.

• election - contains one znode with emphflags ephemeral sequential
for each active node. Used to select the election node, by default the
node with the lowest sequence.

• leader - contains only two znodes:
– elected - created by the election algorithm, identifies the next

leader candidate
– current - created by the leader candidate

110 MANUELA PETRESCU

3.3. Leaders. Both solutions use the concept of Leaders for long-term, steady
operations. This decision is in contrast with Paxos family of algorithms where
each operation is voted by a majority of nodes, a method which requires
more round-trip communications between nodes. Using a master node, on the
other hand, involves a much simpler communication between the leader and
its followers. The leaders are elected using a consensus algorithm between the
candidates or the up-to-date replicas.

3.4. Process startup. First of all, during startup each process must register
in the cluster by connecting to a common Zookeeper cluster. This involves the
following steps:

• Connecting to Zookeeper which starts a zk-session.
• Creating a znode under a certain path with node information (nodeId).
This z-node is ephemeral, meaning that is automatically removed
when the zk-session times out. This node is not used in the election
process, but it only contains some useful instance information such
as IP address, location (site) and possible other info.

• Creating a znode in order to register as a potential election node.
This node is created with a sequential flag, meaning that Zookeeper
will allocate a unique, sequential id to each node. The data value for
this node is also the nodeId. This is used to select the election node
- the node which will run the election process.

• Registering Zookeeper watches on cluster znode, election znode and
leader znode.

3.5. Election process. The election process is triggered by any change in
the list of znodes under the election path. Every time a new node is added to
the cluster or there is a failure and one node stops, the associated zk-session is
timed-out and the ephemeral znodes created by this process are removed from
the Zookeeper repository. These changes are notified immediately to all the
remaining nodes. By reading the remaining election z-nodes and comparing
its own nodeId only the oldest process alive (with the lowest sequence assigned
by Zookeeper) will execute the election process. This node will assume the
temporary role of elector node .

The election process can be designed to be highly flexible by assigning differ-
ent priorities to different nodes. Some of these election strategies are discussed
in the next section. But, in all cases, at the end of the election process the
algorithm chooses one candidate as the next leader. There are cases when this
candidate is the actual leader because a non-leader node exited the cluster, so
nothing else happens and the process stops here.

LEADER ELECTION IN A CLUSTER USING ZOOKEEPER 111

At the end of the election process, if the elected node is different from the
current leader, we create a new elected znode with the nodeId of the new
leader candidate.

From here the next processing happens in parallel as all the nodes also
monitor the znodes under the leader path:

The existing leader node: For it, the presence of a new elected leader
may mean that it must voluntarily give up the leader role. At the end of this
process it deletes the leader znode . A leader or candidate node monitors the
”elected znode” and if it was replaced by a different z-node it must immediately
stop the leader role or the leader transition process.

The elected leader node: When a node detects the presence of a new
elected zone which matches its own id, it automatically starts a process to
become a leader. But, before that, it announces its intention to become a
leader by creating the leader znode with a specific status - PROGRESS.
If the leader znode already exists - maybe because the existing leader has
not removed it yet, then this creation is retried after a short delay. After
successfully creating the leader znode it executes the required procedures and
after that it updates the leader znode with status READY, meaning that the
cluster has a new leader which is ready for processing.

3.6. Leader transition watchdog. Additionally, for improved robustness of
the solution we can include a leader transition watchdog. If an elected leader
does not manage to become leader in X seconds, the election node will run
the algorithm again by excluding the previously selected leader.

3.7. Additional considerations. The election algorithm runs in the call-
back thread used by Zookeeper client library for notifications, which means
that the process is not re-entrant. If the cluster configuration changes while
the election process is running, the process simply runs again when the next
notification is delivered. This implies that an elected node must always be
ready to abort the leader transition at any time, even if just started.

3.8. Principal methods. A. Node startup:

Election process is also triggered when any node under /cluster/election/

112 MANUELA PETRESCU

changes, which means when one node disconnects or when a new one re-joins
the cluster.

B. Election:

C. ProcessExistingLeaderNode

D. ProcessElectedLeaderNode(candidate znode)

E. RunTransitionWatchdog

LEADER ELECTION IN A CLUSTER USING ZOOKEEPER 113

3.9. Election strategies or policies. The most simple election strategies
would be to simply pick the first available node, based on their nodeId order
or, alternatively, to use a round-robin method.

Another possibility is to assign all the nodes to different sites or data centers,
based on their geographical location. For various reasons, nodes belonging to
a particular site are preferred over others. This site preference or priority is
not static, but it change dynamically during normal operation:

• If some critical error disables an entire site, for instance due to failure
of some shared network or storage equipment. In these cases, even if
there are nodes available in the primary site, it may be better/safer
to move the processing to the backup site.

• If there is a planned maintenance operation which impacts all the
nodes in site, the administrator can simply move the leader to an-
other site by temporarily assigning a higher priority to the backup
site.

The election algorithm can be configured to support multiple strategies and
pick the most appropriate one based on the exact circumstances when the
election is run.

4. Conclusion and Future Work

There are applications that have specific rules, applications that are pro-
cessing sensitive data and for which a cloud installation is out of discussion.
For contingency reasons, the servers are split into clusters located in different
places and have additional constraints such as: the new leader should belong to
a different cluster from the previous leader. None of the mentioned algorithms
is enough flexible to allow this approach. All the algorithms have a prede-
fined standard set of constraints and they adjust the election process and the
algorithm behavior based on the same parameter or set of parameters. Our
algorithm permits to set different priorities for the znodes, influencing the
chances to be elected and offering a wider set of methods to customize the
election process.

The proposed algorithm was designed to offer a lot of flexibility regarding
the criterias used in a leader election process, so it maps on a range of ap-
plications that require a customized approach. Even if it adds a new layer
of processing, it allows to prioritize the servers in the election process, thus
enabling a high degree of customization for each application type, taking into
account not only different metrics such as latency, but also requirements such
as the locations of the leader server. There are critical applications that re-
quire a DR site (disaster recovery site), where the nodes should replicate the

114 MANUELA PETRESCU

information posted and processed in the live site. For these types of applica-
tions, the leader election process has other constraints: in case a leader fails,
the processing should be automatically moved to the other site and the new
leader should be selected as one of the nodes from that site. The proposed
algorithm addresses these requirements and can also accommodate other ap-
plication’s specific requirements.

Another benefit added by our proposed algorithm is that the leader transi-
tion happens in two stages: first the new leader is notified and second, only
after the successful completion of the transition process the new leader an-
nounces that the new leader is ready to receive requests. This ensures that if
the leader transition does not proceed as planned, the process can be retried
by another candidate.

The algorithm can be easily extended into a multi-tenant operation, where
there are multiple leaders at the same time, one for each critical resource.
This can be achieved simply by using the Zookeeper znode hierarchy which
is modeled like a tree. In such a multi-tenant operation we would have one
dedicated data structure as described in the Process Startup phase for each
tenant, so that each tenant runs completely isolated from others.

Another possibility is to slightly change the algorithms to support more than
one leader at the same time for the same resource. Such an approach is similar
to a configuration with multiple Active and Spare nodes (or primary/backup
architectures) - where spare nodes are not actually stopped, but idle and
waiting to resume processing or take over the leader/active node as required.

The future work will consist in developing and running a set of tests in order
to check how the system will behave under heavy loading and also to try to
find out if there are vulnerabilities in the proposed algorithm.

References

[1] Artho, C., Banzai, K., Gros, Q., Rousset, G., Ma, L., Kitamura, T., Yamamoto, M.,
Model based testing of Apache ZooKeeper: Fundamental API usage and watchers. Soft-
ware Testing, Verification and Reliability, 2019, DOI:10.1002/stvr.1720

[2] Artho C, Gros Q, Rousset G, Banzai K, Ma L, Kitamura T, Hagiya M, Tanabe Y,
Yamamoto M. Model-based API testing of Apache ZooKeeper. Proc. 2017 IEEE Int.
Conf. on Software Testing, Verification and Validation (ICST 2017): Tokyo, Japan, 2017;
pp. 288-298.

[3] Becker D., Junqueira F., Serafini M., Leader Election for Replicated Services Using
Application Scores.,2011, DOI 7049. 289-308. 10.1007/978-3-642-25821-3 15.

[4] EL-Sanosi I.,Ezhilchelvan P.,Improving the Latency and Throughput of ZooKeeper
Atomic Broadcast, Imperial College Computing Student Workshop, 2018, pp. 3:1–3:10,
ISBN 978-3-95977-059-0, DOI 10.4230/OASIcs.ICCSW.2017.3

[5] EL-Sanosi I. , Ezhilchelvan, P., Improving ZooKeeper Atomic Broadcast Performance by
Coin Tossing, Lecture Notes in Computer Science, 2017, pp.249-265. DOI:10.1007/978-
3-319-66583-2 16

LEADER ELECTION IN A CLUSTER USING ZOOKEEPER 115

[6] Ganesan A., Alagappan R., Arpaci-Dusseau A., Arpaci-Dusseau R., Strong and Efficient
Consistency with Consistency-Aware Durability, 18th USENIX Conference on File and
Storage Technologies, Santa Clara, CA, 2020, ISBN 978-1-939133-12-0

[7] Hunt P, Konar M, Junqueira F, Reed B. ZooKeeper: Wait-free Coordination for Internet-
scale Systems. Proc. USENIX Annual Technical Conf., USENIXATC, USENIX Associa-
tion: Boston, USA, 2010; 11’11. DOI:doi=10.1.1.178.5750

[8] Junqueira F., Reed B. ZooKeeper: Distributed Process Coordination. O’Reilly, 2013,
ISBN-13: 978-1449361303

[9] Medeiros A., ZooKeeper’s atomic broadcast protocol: Theory and practice, Helsinki
University of Technology, 2012, DOI: 10.1.1.473.1373

[10] Medeiros A., ZooKeeper’s atomic broadcast protocol: Theory and prac-
tice,2012, retrieved from http://www.tcs.hut.fi/Studies/T-79.5001/reports/2012-
deSouzaMedeiros.pdf

[11] Petrescu M., Replication in Raft vs Apache Zookeeper, Advances in Intelligent Systems
and Computing, 2020, ISSN 2194-5357

[12] Petrescu M., Petrescu R., Log replication in Raft vs Kafka, Studia Universitas Babes-
Bolyai, 2020, DOI 10.24193/subbi.2020.2.05

[13] Santos, N. H., Andre M.S., Latency-aware Leader Election.,2009, DOI
10.1145/1529282.1529513.

[14] ZooKeeper 3.6 Documentation / ZooKeeper Recipes and Solutions, 2020, retrieved from
https://zookeeper.apache.org/doc/r3.6.2/recipes.html

[15] ZooKeeper 3.6 Documentation / ZooKeeper Programmer’s Guide, 2020, retrieved from
https://zookeeper.apache.org/doc/r3.6.2/zookeeperProgrammers.html

[16] ZooKeeper 3.6 Documentation / The ZooKeeper Data Model, 2020, retrieved from
https://zookeeper.apache.org/doc/current/zookeeperProgrammers.html#Ephemeral+Nodes

Department of Computer Science, Faculty of Mathematics and Computer Sci-
ence, Babes, -Bolyai University, 1 Kogălniceanu St., 400084 Cluj-Napoca, Roma-
nia

Email address: mpetrescu@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXVI, Number 1, 2021
DOI: 10.24193/subbi.2021.1.08

BIBTEX FOR THE ROMANIAN LANGUAGE

MARIAN MUREŞAN

Abstract. BibTeX was created by Oren Patashnik and Leslie Lamport in
1985 according to https://en.wikipedia.org/wiki/BibTeX and turned out
to be a very useful software product. Nevertheless most of the present
scientific paper in mathematics and computer science, and not only, are
written in English. Our aim was to offer to the Romanian scientific paper
writers a variant of the BibTEX whose output agrees with the Romanian
language grammar.

1. Presentation

Many years ago I faced to the following issue: how to use the LATEX and
BibTEX tools to write a book in Romanian so that the output fulfils the
requirements of the Romanian grammar. The problem was the bibliography
part since certain rules are not longer true. A trivial example is the following:
in Romanian there no word and but instead of it there is the word şi .

There in 1996 we started to study how BibTEX is constructed and how can
it be modified. As a result of this attempt a first version of the Romanian
BibTEX was released at July 1st 1996. Later on two improved were performed
and released at November 30th 1997 and February 9th 2009, respectively. Our
package AMSP-MR1.BST accepts input according to the rules of BibTEX and
supplies output with certain changes oriented to the Romanian language.

The latest version of our Romanian BibTEX is uploaded on the author’s web
site http://marianmuresan.wordpress.com. Obviously our product is free.

Faculty of Mathematics and Computer Science, Babeş-Bolyai University, 1
M. Kogălniceanu St., 400084 Cluj-Napoca, Romania

Email address: mmarian@math.ubbcluj.ro

Received by the editors: 2 May 2021.
2010 Mathematics Subject Classification. 97P40, 97R30.
1998 CR Categories and Descriptors. D.3.3 [Language Constructs and Features]: Mod-

ules, packages.
Key words and phrases. BibTEX.

116

	1. Introduction
	2. Identifying problems of a deep CNN
	3. Background Literature
	3.1. Batch Normalization
	3.2. Residual Neural Networks
	3.3. Densely connected neural networks

	4. Solution Overview
	5. Experiments
	6. Discussion
	7. Conclusions and Further Work
	References
	Bibliography

