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On Hadamard-type inequalities for m-convex
functions via Riemann-Liouville fractional
integrals

Ghulam Farid, Atiq Ur Rehman and Bushra Tariq

Abstract. In this paper we prove the Hadamard-type inequalities for m-convex
functions via Riemann-Liouville fractional integrals and the Hadamard-type in-
equalities for convex functions via Riemann-Liouville fractional integral are de-
duced. Also we find connections with some well known results related to the
Hadamard inequality.

Mathematics Subject Classification (2010): 26A51, 26A33, 26D10.

Keywords: Convex functions, Hadamard inequalities, fractional integrals.

1. Introduction

Following L’Hospital’s and Leibniz’s first inquiries, fractional calculus was pri-
marily a study reserved for the best minds in mathematics. Fourier, Euler, Laplace
were among those who were interested in fractional calculus and its mathematical con-
sequences [15]. Euler and Liouville developed their thoughts about the computation
of non-integer order integrals and derivatives. Many initiate, using their own notation
and methodology, definitions that fit the concept of a non-integer order integral or
derivative. The most well-known of these definitions that have been popularized in the
subject of fractional calculus are the Riemann-Liouville and the Grunwald-Letnikov
definition [4, 12]. In [18] Riemann-Liouville fractional integrals are defined as follows:

Definition 1.1. Let f ∈ L1[a, b]. Then Riemann-Liouville fractional integrals of order
α > 0 with a ≥ 0 are defined as:

Jαa+f(x) =
1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt, x > a (1.1)

and

Jαb−f(x) =
1

Γ(α)

∫ b

x

(t− x)α−1f(t)dt, x < b. (1.2)
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For further details one may see [15, 16, 17, 9, 8, 13, 19].
Convex functions play a vital role in the mathematical analysis. They have been
considered for defining and finding new dimensions of analysis. In [20] Toader define
the concept of m-convexity, an intermediate between usual convexity and star shape
function.

Definition 1.2. A function f : [0, b] → R, b > 0, is said to be m-convex, where
m ∈ [0, 1], if we have

f (tx+m(1− t)y) ≤ tf(x) +m(1− t)f(y)

for all x, y ∈ [0, b] and t ∈ [0, 1].

If we take m = 1, then we recapture the concept of convex functions defined on
[0, b] and if we take m = 0, then we get the concept of starshaped functions on [0, b].
We recall that f : [0, b]→ R is called starshaped if

f(tx) ≤ tf(x) for all t ∈ [0, 1] and x ∈ [0, b].

Denote by Km(b) the set of the m-convex functions on [0, b] for which f(0) < 0, then
one has

K1(b) ⊂ Km(b) ⊂ K0(b),

whenever m ∈ (0, 1). Note that in the class K1(b) are only convex functions f : [0, b]→
R for which f(0) ≤ 0 (see [5]).

Example 1.3. [14] The function f : [0,∞)→ R, given by

f(x) =
1

12

(
4x3 − 15x2 + 18x− 5

)
is 16

17−convex function but it is not convex function.

For more results and inequalities related to m-convex functions one can consult
for example [7, 5, 11, 2, 16] along with references.
Let f : I → R be a convex function on the interval I of real numbers and a, b ∈ I
with a < b, then the following double inequality:

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
(1.3)

is well known in literature as the Hadamard inequality.
For more refinements, generalizations and inequalities related to (1.3), see [1, 2,

3, 16, 6].
In [19], Sarikaya et al. proved the following Hadamard-type inequalities for

Riemann-Liouville fractional integrals.

Theorem 1.4. Let f : [a, b]→ R be a positive function with 0 ≤ a < b and f ∈ L1[a, b].
If f is a convex function on [a,b], then the following inequalities for fractional integrals
hold:

f

(
a+ b

2

)
≤ 2α−1Γ(α+ 1)

(b− a)α

[
Jα
( a+b

2 )+
f(b) + Jα

( a+b
2 )−f(a)

]
≤ f(a) + f(b)

2
(1.4)

with α > 0.
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Theorem 1.5. Let f : [a, b] → R be a differentiable function on (a,b) with a < b. If
|f ′|q is convex on [a, b] for q ≥ 1, then the following inequality for fractional integrals
holds: ∣∣∣∣2α−1Γ(α+ 1)

(b− a)α
[Jα

( a+b
2 )+

f(b) + Jα
( a+b

2 )−f(a)]− f
(
a+ b

2

)∣∣∣∣
≤ b− a

4(α+ 1)

(
1

2(α+ 2)

) 1
q [

((α+ 1)|f ′(a)|q + (α+ 3)|f ′(b)|q)
1
q

+ ((α+ 3)|f ′(a)|q + (α+ 1)|f ′(b)|q)
1
q

]
.

(1.5)

Theorem 1.6. Let f : [a, b] → R be a differentiable function on (a,b) with a < b. If
|f ′|q is convex on [a, b] for q > 1, then the following inequality for fractional integral
holds:∣∣∣∣2α−1Γ(α+ 1)

(b− a)α
[Jα

( a+b
2 )+

f(b) + Jα
( a+b

2 )−f(a)]− f
(
a+ b

2

)∣∣∣∣
≤ b− a

4

(
1

αp+ 1

) 1
p

[(
|f ′(a)|q + 3|f ′(b)|q

4

) 1
q

+

(
3|f ′(a)|q + |f ′(b)|q

4

) 1
q

]

≤ b− a
4

(
4

αp+ 1

) 1
p

[|f ′(a)|+ |f ′(b)|],

(1.6)

where 1
p + 1

q = 1.

In this paper we generalize the fractional Hadamard-type inequalities (1.4), (1.5)
and (1.6) for m-convex function via Riemann-Liouville fractional integrals and show
that these inequalities are the special cases of our results. Also we find some well
known results.

2. Hadamard-type inequalities for m-convex functions via fractional
integrals

Start with the following result.

Theorem 2.1. Let f : [a, b]→ R be a positive function with 0 ≤ a < b and f ∈ L1[a, b].
If f is a m-convex function on [a, b], then the following inequalities for fractional
integrals hold:

f

(
a+mb

2

)
≤ 2α−1Γ(α+ 1)

(mb− a)
α

[
Jα
( a+mb

2 )+
f(mb) +mα+1Jα

( a+mb
2m )−f

( a
m

)]
(2.1)

≤ α

4(α+ 1)

[
f(a)−m2f

( a

m2

)]
+
m

2

[
f(b) +mf

( a

m2

)]
with α > 0.

Proof. From m-convexity of f we have,

f

(
x+my

2

)
≤ f(x) +mf(y)

2
. (2.2)
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Put x = t
2a + m (2−t)

2 b, y = (2−t)
2m a + t

2b for t ∈ [0, 1]. Then x, y ∈ [a, b] and above
inequality gives,

2f

(
a+mb

2

)
≤ f

(
t

2
a+m

2− t
2

b

)
+mf

(
2− t
2m

a+
t

2
b

)
, (2.3)

multiplying both sides of above inequality with tα−1, and integrating over [0, 1] we
have,

2

α
f

(
a+mb

2

)
≤
∫ 1

0

tα−1f

(
t

2
a+m

2− t
2

b

)
dt+m

∫ 1

0

tα−1f

(
2− t
2m

a+
t

2
b

)
dt

=

∫ a+mb
2

mb

(
2

mb− a
(mb− u)

)α−1
f(u)

2du

a−mb

+m2

∫ a+mb
2m

a
m

(
2

b− a
m

(v − a

m
)

)α−1
f(v)

2dv

mb− a

=
2αΓ(α)

(mb− a)
α

[
Jα
( a+mb

2 )+
f(mb) +mα+1Jα

( a+mb
2m )−f

( a
m

)]
,

from which one has

f

(
a+mb

2

)
≤ 2α−1Γ(α+ 1)

(mb− a)
α

[
Jα
( a+mb

2 )+
f(mb) +mα+1Jα

( a+mb
2m )−f

( a
m

)]
. (2.4)

On the other hand m-convexity of f gives

f

(
t

2
a+m

2− t
2

b

)
+mf

(
2− t
2m

a+
t

2
b

)
≤ t

2

[
f(a)−m2f

( a

m2

)]
+m

[
f(b) +mf

( a

m2

)]
,

multiplying both sides of above inequality with tα−1, and integrating over [0, 1] we
have, ∫ 1

0

tα−1f

(
t

2
a+m

2− t
2

b

)
dt+m

∫ 1

0

tα−1f

(
2− t
2m

a+
t

2
b

)
dt

≤ 1

2

[
f(a)−m2f

( a

m2

)] ∫ 1

0

tαdt+m
[
f(b) +mf

( a

m2

)] ∫ 1

0

tα−1dt∫ a+mb
2

mb

(
2

mb− a
(mb− u)

)α−1
f(u)

2du

a−mb

+m2

∫ a+mb
2m

a
m

(
2

b− a
m

(v − a

m
)

)α−1
f(v)

2dv

mb− a

≤ 1

2(α+ 1)

[
f(a)−m2f

( a

m2

)]
+
m

α

[
f(b) +mf

( a

m2

)]
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from which one has

2α−1Γ(α+ 1)

(mb− a)
α

[
Jα
( a+mb

2 )+
f(mb) +mα+1Jα

( a+mb
2m )−f

( a
m

)]
(2.5)

≤ α

4(α+ 1)

[
f(a)−m2f

( a

m2

)]
+
m

2

[
f(b) +mf

( a

m2

)]
.

Combining inequality (2.4) and inequality (2.5) we get inequality (2.1) . �

Remark 2.2. If we take m = 1, Theorem 2.1 gives inequality (1.4) of Theorem 1.4
and putting α = 1 along with m = 1 in Theorem 2.1 we get the classical Hadamard
inequality.

For next results we need the following lemma.

Lemma 2.3. Let f : [a, b] → R be a differentiable mapping on (a, b) with a < b. If

f
′ ∈ L[a, b], then the following equality for fractional integrals holds:

2α−1Γ(α+ 1)

(mb− a)α

[
Jα
( a+mb

2 )+
f(mb) +mα+1Jα

( a+mb
2m )−f

( a
m

)]
− 1

2

[
f

(
a+mb

2

)
+mf

(
a+mb

2m

)]
=
mb− a

4

[∫ 1

0

tαf ′
(
t

2
a+m

2− t
2

b

)
dt−

∫ 1

0

tαf ′
(

2− t
2m

a+
t

2
b

)
dt

]
.

(2.6)

Proof. One can note that

mb− a
4

[∫ 1

0

tαf ′
(
t

2
a+m

2− t
2

b

)
dt

]
=
mb− a

4

[
− 2

mb− a
f

(
a+mb

2

)
(2.7)

− 2α

(a−mb)

∫ a+mb
2

mb

(
2

mb− a
(mb− x)

)α−1
2

a−mb
f(x)dx

]

=
mb− a

4

[
− 2

mb− a
f

(
a+mb

2

)
+

2α+1Γ(α+ 1)

(mb− a)α+1
Jα
( a+mb

2 )−f(mb)

]
. (2.8)

Similarly

− mb− a
4

[∫ 1

0

tαf ′
(

2− t
2m

a+
t

2
b

)
dt

]
= −mb− a

4

[
2m

mb− a
f

(
a+mb

2m

)
− 2α+1mα+1Γ(α+ 1)

(mb− a)α+1
Jα
( a+mb

2m )+
f
( a
m

)]
. (2.9)

Adding (2.7) and (2.9) one has (2.6). �

Using the above lemma we give the following Hadamard-type inequality.
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Theorem 2.4. Let f : [a, b] → R be a differentiable function on (a,b) with a < b.
If |f ′|q is m-convex on [a, b] for q ≥ 1, then the following inequality for fractional
integrals holds:∣∣∣∣2α−1Γ(α+ 1)

(mb− a)α

[
Jα
( a+mb

2 )+
f(mb) +mα+1Jα

( a+mb
2m )−f

( a
m

)]
−1

2

[
f

(
a+mb

2

)
+mf

(
a+mb

2m

)]∣∣∣∣
≤ mb− a

4(α+ 1)

(
1

2(α+ 2)

) 1
q [

((α+ 1) |f ′(a)|q +m (α+ 3) |f ′(b)|q)
1
q

+
(
m (α+ 3) |f ′

( a

m2

)
|q + (α+ 1) |f ′(b)|q

) 1
q

]
.

(2.10)

with α > 0.

Proof. From Lemma 2.3 and m-convexity of |f ′|q and for q = 1 we have∣∣∣∣2α−1Γ(α+ 1)

(mb− a)α

[
Jα
( a+mb

2 )+
f(mb) +mα+1Jα

( a+mb
2m )−f

( a
m

)]
−1

2

[
f

(
a+mb

2

)
+mf

(
a+mb

2m

)]∣∣∣∣
≤ mb− a

4

∫ 1

0

tα
(∣∣∣∣f ′( t2a+m

2− t
2

b

)∣∣∣∣ dt+

∣∣∣∣f ′(2− t
2m

a+
t

2
b

)∣∣∣∣) dt.
=
mb− a

4

(
m

α+ 1

[
|f ′(b)|+ |f ′

( a

m2

)
|
]

+
[
|f ′(a)| −m|f ′

( a

m2

)
|+ |f ′(b)| −m|f ′(b)|

])
.

For q > 1 we proceed as follows. Using Lemma 2.3 we have∣∣∣∣2α−1Γ(α+ 1)

(mb− a)α

[
Jα
( a+mb

2 )+
f(mb) +mα+1Jα

( a+mb
2m )−f

( a
m

)]
−1

2

[
f

(
a+mb

2

)
+mf

(
a+mb

2m

)]∣∣∣∣
≤ mb− a

4

∫ 1

0

tα
∣∣∣∣f ′( t2a+m

2− t
2

b

)∣∣∣∣ dt+

∫ 1

0

tα
∣∣∣∣f ′(2− t

2m
a+

t

2
b

)∣∣∣∣ dt.
Using power mean inequality we get∣∣∣∣2α−1Γ(α+ 1)

(mb− a)α

[
Jα
( a+mb

2 )+
f(mb) +mαJα

( a+mb
2m )−f

( a
m

)]
−1

2

[
f

(
a+mb

2

)
+mf

(
a+mb

2m

)]∣∣∣∣
≤ mb− a

4

(
1

α+ 1

) 1
p

[[∫ 1

0

tα
∣∣∣∣f ′( t2a+m

2− t
2

b

)∣∣∣∣q dt]
1
q
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+

[∫ 1

0

tα
∣∣∣∣f ′(2− t

2m
a+

t

2
b

)∣∣∣∣q dt]
1
q

]
.

m-convexity of |f ′|q gives∣∣∣∣2α−1Γ(α+ 1)

(mb− a)α

[
Jα
( a+mb

2 )+
f(mb) +mα+1Jα

( a+mb
2m )−f

( a
m

)]
−1

2

[
f

(
a+mb

2

)
+mf

(
a+mb

2m

)]∣∣∣∣
≤ mb− a

4

(
1

α+ 1

) 1
p

[[∫ 1

0

tα
(
t

2
|f ′(a)|q +m

2− t
2
|f ′(b)|q

)
dt

] 1
q

+

[∫ 1

0

tα
(
m

2− t
2
|f ′
( a

m2

)
|q +

t

2
|f ′(b)|q

)
dt

] 1
q

]

=
mb− a

4(α+ 1)

(
1

2(α+ 2)

) 1
q [

((α+ 1) |f ′(a)|q +m (α+ 3) |f ′(b)|q)
1
q

+
(
m (α+ 3) |f ′

( a

m2

)
|q + (α+ 1) |f ′(b)|q

) 1
q

]
.

Hence the proof is complete. �

Remark 2.5. If we take m = 1 in Theorem 2.4, we get inequality (1.5) of Theorem
1.5 and if we take α = q = 1 along with m = 1 in Theorem 2.4, then inequality (2.10)
gives the following result.

Corollary 2.6. With the assumptions of Theorem 2.4 we have∣∣∣∣∣ 1

b− a

∫ b

a

f(x)dx− f
(
a+ b

2

)∣∣∣∣∣ ≤ (b− a)

8
(|f ′(a)|+ |f ′(b)|) . (2.11)

Theorem 2.7. Let f : [a, b] → R be a differentiable function on (a,b) with a < b.
If |f ′|q is m-convex on [a, b] for q > 1, then the following inequality for fractional
integral holds:∣∣∣∣2α−1Γ(α+ 1)

(mb− a)α

[
Jα
( a+mb

2 )+
f(mb) +mα+1Jα

( a+mb
2m )−f

( a
m

)]
−1

2

[
f

(
a+mb

2

)
+mf

(
a+mb

2m

)]∣∣∣∣
≤ mb− a

4

(
1

αp+ 1

) 1
p

( |f ′(a)|q + 3m|f ′(b)|q

4

) 1
q

+

(
3m|f ′

(
a
m2

)
|q + |f ′(b)|q

4

) 1
q


≤ mb− a

4

(
4

αp+ 1

) 1
p [
|f ′(a)|+ |f ′(b)|+ 3m

(
|f ′
( a

m2

)
|+ |f ′(b)|

)]
,

(2.12)
with 1

p + 1
q = 1.
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Proof. Using Lemma 2.3 we have∣∣∣∣2α−1Γ(α+ 1)

(mb− a)α

[
Jα
( a+mb

2 )+
f(mb) +mα+1Jα

( a+mb
2m )−f

( a
m

)]
−1

2

[
f

(
a+mb

2

)
+mf

(
a+mb

2m

)]∣∣∣∣
≤ mb− a

4

[∫ 1

0

tα
∣∣∣∣f ′( t2a+m

2− t
2

b

)∣∣∣∣ dt+

∫ 1

0

tα
∣∣∣∣f ′(2− t

2m
a+

t

2
b

)∣∣∣∣ dt] .
From the Hölder′s inequality we get∣∣∣∣2α−1Γ(α+ 1)

(mb− a)α

[
Jα
( a+mb

2 )+
f(mb) +mα+1Jα

( a+mb
2m )−f

( a
m

)]
−1

2

[
f

(
a+mb

2

)
+mf

(
a+mb

2m

)]∣∣∣∣
≤ mb− a

4

[[∫ 1

0

tαpdt

] 1
p
[∫ 1

0

∣∣∣∣f ′( t2a+m
2− t

2
b

)∣∣∣∣q dt]
1
q

+

[∫ 1

0

tαpdt

] 1
p
[∫ 1

0

∣∣∣∣f ′(2− t
2m

a+
t

2
b

)∣∣∣∣q dt]
1
q

]
.

m-convexity of |f ′|q gives∣∣∣∣2α−1Γ(α+ 1)

(mb− a)α

[
Jα
( a+mb

2 )+
f(mb) +mα+1Jα

( a+mb
2m )−f

( a
m

)]
−1

2

[
f

(
a+mb

2

)
+mf

(
a+mb

2m

)]∣∣∣∣
≤ mb− a

4

(
1

αp+ 1

) 1
p

[[∫ 1

0

(
t

2
|f ′(a)|q +m

2− t
2
|f ′(b)|q

)
dt

] 1
q

+

[∫ 1

0

(
m

2− t
2
|f ′( a

m2
)|q +

t

2
|f ′(b)|q

)
dt

] 1
q

]

=
mb− a

4

(
1

αp+ 1

) 1
p

[ |f ′(a)|q + 3m|f ′(b)|q

4

] 1
q

+

[
3m|f ′

(
a
m2

)
|q + |f ′(b)|q

4

] 1
q

 .
For the second inequality of (2.12) we use Minkowski’s inequality as∣∣∣∣2α−1Γ(α+ 1)

(mb− a)α

[
Jα
( a+mb

2 )+
f(mb) +mα+1Jα

( a+mb
2m )−f

( a
m

)]
−1

2

[
f

(
a+mb

2

)
+mf

(
a+mb

2m

)]∣∣∣∣
≤ mb− a

16

(
4

αp+ 1

) 1
p
[
[|f ′(a)|q + 3m|f ′(b)|q]

1
q +

[
3m|f ′

( a

m2

)
|q + |f ′(b)|q

] 1
q

]
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≤ mb− a
4

(
4

αp+ 1

) 1
p [
|f ′(a)|+ |f ′(b)|+ 3m

(
|f ′
( a

m2

)
|+ |f ′(b)|

)]
. �

Remark 2.8. If we take m = 1 in Theorem 2.7, we get inequality (1.6) of Theorem 1.6
and if we take α = 1 along with m = 1 in Theorem 2.7, then inequality (2.12) gives
the following result.

Corollary 2.9. With the assumptions of Theorem 2.7 we have∣∣∣∣∣ 1

b− a

∫ b

a

f(x)dx− f
(
a+ b

2

)∣∣∣∣∣
≤ b− a

16

(
4

p+ 1

) 1
p [

(|f ′(a)|q + 3|f ′(b)|q)
1
q + (3|f ′(a)|q + |f ′(b)|q)

1
q

]
.

(2.13)
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The first Zolotarev case in the Erdös-Szegö
solution to a Markov-type extremal problem
of Schur

Heinz-Joachim Rack

Abstract. Schur’s [14] Markov-type extremal problem asks to find the maximum

(1) sup
−1≤ξ≤1

sup
Pn∈Bn,ξ,2

|P (1)
n (ξ)|, where Bn,ξ,2 = {Pn ∈ Bn : P

(2)
n (ξ) = 0} ⊂ Bn =

{Pn : |Pn(x)| ≤ 1 for |x| ≤ 1} and Pn is an algebraic polynomial of degree ≤ n.
Erdös and Szegö [3] found that for n ≥ 4 this maximum is attained if ξ = ±1
and Pn ∈ Bn,ξ,2 is a (unspecified) member of the 1-parameter family of hard-core
Zolotarev polynomials Zn,t. Our first result centers around the proof in [3] for the
initial case n = 4 and is three-fold: (i) the numerical value for (1) in ([3], (7.9))
is not correct, but sufficiently precise; (ii) from preliminary work in [3] can in
fact be deduced a closed analytic expression for (1) if n = 4, allowing numerical
evaluation to any precision; (iii) even the explicit power form representation of an
extremal Z4,t = Z4,t∗ can be deduced from [3], thus providing an exemplification
of Schur’s problem that seems to be novel. Additionally, we cross-check its validity
twice: firstly by deriving Z4,t∗ conversely from a general formula for Z4,t that we
have given in [12], and secondly by applying Theorem 5.10 in [11]. We then turn
to a generalized solution of Schur’s problem, to k -th derivatives, by Shadrin
[16]. Again we provide in explicit form the corresponding maximum as well as an
extremizer polynomial for the first non-trivial degree n = 4. Finally, we contribute
to the fuller description of Z4,t by providing its critical points in explicit form.

Mathematics Subject Classification (2010): 26C05, 26D10, 41A10, 41A17, 41A29,
41A44, 41A50.

Keywords: Chebyshev, derivative, Erdös, extremal problem, inequality, Markov,
polynomial, quartic, Schur, Shadrin, Szegö, Zolotarev.
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1. Introduction

The famous A. A. Markov inequality of 1889 [8] asserts an estimate on the size
of the first derivative of an algebraic polynomial Pn of degree ≤ n and can be restated
as follows:

sup
ξ∈I

sup
Pn∈Bn

|P (1)
n (ξ)| = n2 = T (1)

n (1), (1.1)

where I = [−1, 1] and Bn = {Pn : |Pn(x)| ≤ 1 for x ∈ I}. As indicated, this maximum
will be attained if, up to the sign, Pn = Tn ∈ Bn is the n-th Chebyshev polynomial
of the first kind on I (defined by Tn(x) = 2xTn−1(x) − Tn−2(x) with T1(x) = x,
T0(x) = 1) and if ξ = ±1, see e.g. ([10], p. 529), ([13], p. 123).

In 1919 I. Schur ([14], §2), inspired by (1.1), was led to the problem of finding

the maximum of |P (1)
n (ξ)| under the additional restriction P

(2)
n (ξ) = 0: Determine

Pn = P ∗n which attains, for n ≥ 3,

sup
ξ∈I

sup
Pn∈Bn,ξ,2

|P (1)
n (ξ)| = n2Mn, (1.2)

where Bn,ξ,2 = {Pn ∈ Bn : P
(2)
n (ξ) = 0} and Mn is a constant (depending on n).

Schur ([14], (9)) proved that there holds

sup
ξ∈I

sup
Pn∈Bn,ξ,2

|P (1)
n (ξ)| < 1

2
n2, so that Mn <

1

2
. (1.3)

In 1942 P. Erdös and G. Szegö addressed this problem of Schur and they provided
the following solution ([3], Theorem 2):

The maximum (1.2) will be attained, for n ≥ 4, only if ξ = 1 and Pn = P ∗n
is a (unspecified) member of the 1-parameter family (with parameter t) of hard-core
Zolotarev polynomials ±Zn,t; or if ξ = −1 and Pn = P ∗n is a (unspecified) member of
the family ±Z−n,t, where Z−n,t(x) = Zn,t(−x).

We leave aside the simple case n = 3 (with solution ξ = 0 and P3 = P ∗3 = ±T3
([3], p. 466)). Henceforth we will confine ourselves to specify only one extremal poly-
nomial P ∗n for a given problem on I, but will keep in mind that −P ∗n as well as ±Q∗n,
where ±Q∗n(x) = ±P ∗n(−x), may likewise be extremal. The solutions to (1.1) and
(1.2) have in common that the maximum is attained at the endpoints ξ = ±1 of the
unit interval I. But, on the other hand, the solutions differ greatly when it comes to
exhibit an explicit extremal polynomial from Bn resp. Bn,ξ,2: Whereas in (1.1) an
extremizer is, for all n ≥ 1, the well-known n -th Chebyshev polynomial Tn [13], the
explicit power form of the intricate extremizers Zn,t in (1.2) remained arcane for all
n ≥ 4. This is due to the fact that for a general degree n the explicit power form of
a hard-core Zolotarev polynomial Zn,t is not known ([16], p. 1185). Rather, Zn,t can
be expressed with the aid of elliptic functions (see ([1], pp. 280), ([10], p. 407), [18])
which amounts to an extremely complicated concoction of elliptic quantities ([17], p.
52).
It is a purpose of this note to provide, nearly one hundred years after the origin of
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Schur’s problem, the explicit power form of a particular hard-core Zolotarev poly-
nomial Zn,t = Zn,t∗ which is extremal for (1.2), at least for the first nontrivial case
n = 4. Such a solution was coined Schur polynomial in ([11], Section 5d), where a
numerical method (solution of a system of nonlinear equations) is advised in order to
determine it.
We will first tackle the explicit analytic expression for (1.2) if n = 4. Once it has been
established, to calculate its numerical value to arbitrary precision becomes immediate.
Incidentally, we notice that the numerical value for 16M4 as given in ([3], (7.9)) is not
correct from the third decimal place on. We then deduce, in three alternative fashions,
an extremal hard-core Zolotarev polynomial P ∗4 = Z4,t∗ with optimal value t∗ of the
parameter t. This Schur polynomial P ∗4 may well serve as illustrative example of the
result in ([3], Theorem 2). Finally, we will consider a recent generalization of Schur’s
problem (1.2), due to A. Shadrin [16], to higher derivatives of Pn, and again we will
exemplify the quartic case n = 4. In a closing remark we reveal the critical points of
Z4,t to get a fuller picture of the quartic hard-core Zolotarev polynomial.

2. Analytical and numerical value of the maximum in the quartic case

To determine the value in (1.2) for n = 4 we rely on preliminary work in ([3],
Section 7) and will therefore retain, for the reader’s convenience, the notation used
there. A sought-for extremal hard-core Zolotarev polynomial P ∗4 which solves (1.2)
can be assumed to be from class B4,1,2 and be represented as, see ([3], (7.3)),

P ∗4 (x) = 1− λ(1− x)(B4 − x)(y1 − x)2, (2.1)

where λ,B4, y1 are parameters which reflect properties of P ∗4 , such as:

P ∗4 (−1) = −1, P ∗4 (y1) = 1, P
∗(1)
4 (y1) = 0, P ∗4 (1) = P ∗4 (B4) = 1.

The first and second derivative of P ∗4 at x = 1 read:

P
∗(1)
4 (1) = λ(B4− 1)(1− y1)2 and P

∗(2)
4 (1) = 2λ(y1− 1)(2(1−B4)− (y1− 1)), (2.2)

so that the condition P
∗(2)
4 (1) = 0 yields y1 = 3 − 2B4 which, when inserted into

P
∗(1)
4 (1), eliminates there the parameter y1. From P ∗4 (−1) = −1 one deduces, upon

inserting the said value of y1, that

λ =
1

(B4 + 1)(4− 2B4)2
,

see (2.1). This implies

P
∗(1)
4 (1) =

(B4 − 1)3

(B4 − 2)2(B4 + 1)
.

The identity

2

B4 − 1
=

11−
√

33 + 2
√

5(5 +
√

33)

8
,

which is given in an equivalent form in ([3], (7.8)), allows to evaluate B4 (see (3.2)

below). Inserting this value of B4 into the preceding expression for P
∗(1)
4 (1) eventually
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yields the analytical expression for the maximum, which can be evaluated numerically
to any desired precision:

P
∗(1)
4 (1) = supξ∈I supP4∈B4,ξ,2

∣∣∣P (1)
4 (ξ)

∣∣∣ = 16M4

=
−561 + 161

√
33 +

√
30(15215 + 3329

√
33)

288

= 4.7876468942...,

(2.3)

being a root of P4(x) = −65536− 39424x− 1915x2 + 1683x3 + 216x4.

By contrast, Formula (7.9) in [3] states that

P
∗(1)
4 (1) = 4.7881... (2.4)

holds, a value which is now seen to be biased in the third and fourth decimal place.
But that bias does not harm the argument in [3] for n = 4 since the first two valid
decimal places are sufficiently conclusive for P ∗4 to be the extremal element (as a com-

parison is drawn with competitor polynomial T4 and value
∣∣∣T (1)

4

(
1√
6

)∣∣∣ = 4.3546...,

see ([3], (7.2))).
The constant M4 itself can thus be represented as

M4 =
P

∗(1)
4 (1)
16 = supξ∈I supP4∈B4,ξ,2

∣∣∣P (1)
4 (ξ)

∣∣∣
42

=
−561 + 161

√
33 +

√
30(15215 + 3329

√
33)

4608

= 0.2992279308... .

(2.5)

We note that according to ([3], (1.3), (1.4)) there holds lim
n→∞

Mn = 0.3124... .

Schur ([14], p. 277) had obtained the weaker result 0.217... ≤ lim sup
n→∞

Mn ≤ 0.465... .

3. Explicit power form representation of an extremal hard-core
Zolotarev polynomial in the quartic case

Having expressed the parameters λ = λ(B4) and y1 = y1(B4) as functions of B4

alone and knowing the value of the constant B4, it is possible to even retrieve the
explicit power form of an extremal P ∗4 . In fact, according to the preceding Section we
have

P ∗4 (x) = 1− λ(1− x)(B4 − x)(y1 − x)2

= 1− (1− x)(B4 − x)(3− 2B4 − x)2

(B4 + 1)(4− 2B4)2

(3.1)
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Inserting now

B4 =
177− 17

√
33 +

√
30(527 + 97

√
33)

144

= 1.8034303689...

(3.2)

and expanding (3.1) leads us, after some algebraic manipulations, to the explicit power
form representation of an extremal quartic hard-core Zolotarev polynomial P ∗4 with

P ∗4 (x) =

4∑
i=0

a∗i x
i

and with coefficients

a∗0 =
21297− 2081

√
33−

√
30(3160847 + 628577

√
33)

9216
= −0.5328330303...

a∗1 =
291− 1139

√
33−

√
30(−1236313 + 427337

√
33)

4608
= −2.6688925571...

a∗2 =
−849 + 161

√
33 +

√
30(15215 + 3329

√
33)

384
= 2.8407351706...

a∗3 =
4317 + 1139

√
33 +

√
30(−1236313 + 427337

√
33)

4608
= 3.6688925571...

a∗4 =
−921− 1783

√
33−

√
330(−59555 + 64243

√
33)

9216
= −2.3079021403... .

(3.3)
These optimal coefficients a∗i are roots of the following respective quartic polynomials
P4,i with integer coefficients:

P4,0(x) = −7951932− 7463259x+ 11697424x2 − 4089024x3 + 442368x4

P4,1(x) = 12221 + 273251x− 7120x2 − 3492x3 + 13824x4

P4,2(x) = −236196− 112023x+ 17720x2 + 13584x3 + 1536x4

P4,3(x) = 288684− 303831x+ 65348x2 − 51804x3 + 13824x4

P4,4(x) = 314928 + 2644083x− 861584x2 + 176832x3 + 442368x4.

(3.4)

This result constitutes, to the best of our knowledge, the first explicit example of an
extremal P ∗n which solves Schur’s problem according to Erdös-Szegö ([3], Theorem
2) (here for the first Zolotarev case n = 4). It is therefore worth summarizing the
properties of that Schur polynomial P ∗4 ∈ B4:
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(i) The equiripple property on I, i.e., 4 alternation points, including the endpoints ±1:

P ∗4 (−1) = −1,

P ∗4 (y1) = 1 and P
∗(1)
4 (y1) = 0,where

y1 = 1
72 (39 + 17

√
33−

√
30(527 + 97

√
33)) = −0.6068607378...,

P ∗4 (y2) = −1 and P
∗(1)
4 (y2) = 0,where

y2 = 1
72 (105−

√
33−

√
30(95 + 17

√
33)) = 0.3226516930...,

P ∗4 (1) = 1.

(3.5)

(ii) The Zolotarev property at three points A4 < B4 < C4 to the right of I (of which
B4 and C4 are two additional alternation points)

P
∗(1)
4 (A4) = 0, where

A4 =
279 + 25

√
33 +

√
30(2879 + 561

√
33)

576
= 1.4764907146...,

P ∗4 (B4) = 1, where B4 is given in (3.2),
P ∗4 (C4) = −1, where

C4 =
201 + 55

√
33−

√
330(61 + 19

√
33)

144
= 1.9444055070... .

(3.6)

Additionally, by construction, P ∗4 satisfies

P
∗(2)
4 (1) = 2(a∗2 + 3a∗3 + 6a∗4) = 0, i.e., P ∗4 ∈ B4,1,2

P
∗(1)
4 (1) = a∗1 + 2a∗2 + 3a∗3 + 4a∗4 = 16M4, see (2.3),

(3.7)

and we add, by inspection, that

a∗3 = 1− a∗1 and a∗4 = −a∗0 − a∗2. (3.8)

That particular hard-core Zolotarev polynomial P ∗4 may well serve as elucidating
example to provide for explanation purposes in lectures or expository writings on
Schur’s problem, respectively on its solution by Erdös-Szegö, see e.g. [4].

4. Alternative deductions of an explicit extremal hard-core Zolotarev
polynomial in the quartic case

In ([12], p. 357) we have provided explicit expressions for the parameterized
coefficients of an arbitrary fourth-degree hard-core Zolotarev polynomial on I. But
since the assumption was made there that it attains the value 1 at x = −1, we prefer
to consider here the negative form of that polynomial in order to be compliant with
[3]. We hence set

Z4,t(x) =

4∑
i=0

−ai(t)xi, with 1 < t < 1 +
√

2 (4.1)
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where the coefficients ai(t) read as follows:

a0(t) =
(
−a5 − b3 + a4(−2 + 3b) + a3(−1 + 6b− 3b2)+
+a(3b2 − 2b3) + a2(3b+ 2b2 + b3)

)
κ,

a1(t) = (a2(−16b+ 8b2) + a(−12b+ 8b2 − 4b3))κ,
a2(t) = (a2(8− 16b) + 6b− 4b2 + 2b3 + a(6− 4b+ 2b2))κ,
a3(t) = (−4 + 8a2 + 8b+ 8ab− 4b2)κ,
a4(t) = (−4− 6a+ 2b)κ

(4.2)

with

κ =
1

(1 + a)2(−a+ b)3

a =
1− 3t− t2 − t3

(1 + t)3

b =
1 + t+ 3t2 − t3

(1 + t)3
.

(4.3)

Here a and b with a < b are the alternation points of Z4,t in the interior of I. We now
proceed to determine the optimal parameter t = t∗ and the corresponding explicit

coefficients −ai(t∗) of an extremal polynomial Z4,t∗ with Z4,t∗(x) =
4∑
i=0

−ai(t∗)xi

which, according to the general result in ([3], Theorem 2), solves Schur’s problem
(1.2) for n = 4.

The assumption Z4,t ∈ B4,1,2, i.e., Z
(2)
4,t (1) = 0, implies

a2(t) + 3a3(t) + 6a4(t) = 0. (4.4)

Employing the definition of ai(t) in (4.2),(4.3) this amounts to the following equation,
after some algebraic manipulations:

(1 + t)3(3 + t(2 + t))(−2 + t(−7 + t(1 + 3(−1 + t)t)))

4(t+ t3)2
= 0. (4.5)

The numerator vanishes, for 1 < t < 1 +
√

2, only if we choose

t = t∗ =
3 +
√

33 +
√

30(−1 +
√

33)

12
= 1.7229220588..., (4.6)

which is a root of the polynomial P4(x) = −2 − 7x + x2 − 3x3 + 3x4. Inserting the
optimal parameter (4.6) into the coefficients −ai(t) of Z4,t, see (4.2), (4.3), shows that
−ai(t∗) indeed coincides for i = 0, 1, 2, 3, 4 with a∗i as given in (3.3). We check only
the coefficient −a4(t) and leave it to the reader to check the remaining coefficients:

−a4(t) =
4 + 6a− 2b

(1 + a)2(−a+ b)3
=

(1− t)(1 + t)9

32t3(1 + t2)2
, (4.7)

and inserting now t = t∗ according to (4.6) indeed yields −a4(t∗) = a∗4 as given in
(3.3). After all, we so obtain an alternative and independent deduction of the extremal
hard-core Zolotarev polynomial P ∗4 = Z4,t∗ which we had already found in Section 3,
based on preliminary work in [3].
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A third argument can be brought forward to prove that P ∗4 = Z4,t∗ is a sought-
for extremizer in (1.2) for n = 4, see ([11], Theorem 5.10): It suffices to verify that
the following five equations hold true

−1 + 2(−y1 + y2)− (1 +B4 − C4) = 0 (4.8)

1 + 2(−y21 + y22)− (1 +B2
4 − C2

4 ) = 0 (4.9)

−1 + 2(−y31 + y32)− (1 +B3
4 − C3

4 ) = 0 (4.10)

16(A4 − 1)2

(B4 − 1)(C4 − 1)
= 1 + 2

(
2

A4 − 1
− 1

B4 − 1
− 1

C4 − 1

)
(4.11)

A4 =
3

8
(B4 + C4)− 1

4
(y1 + y2), (4.12)

where y1 and y2 are defined in (3.5), A4 and C4 are defined in (3.6), and B4 is defined
in (3.2). We leave it to the reader to check the validity of equations (4.8) - (4.12).
Summarizing, we have thus established

Proposition 4.1. Polynomial P ∗4 with P ∗4 (x) =
4∑
i=0

a∗i x
i and explicit coefficients a∗i

(i = 0, 1, 2, 3, 4) according to (3.3) is a sought-for extremal hard-core Zolotarev poly-
nomial of degree four which solves, according to Erdös-Szegö ([3], Theorem 2), Schur’s
problem (1.2) for n = 4. The corresponding maximum

sup
ξ∈I

sup
P4∈B4,ξ,2

∣∣∣P (1)
4 (ξ)

∣∣∣ = 16M4

is explicitly given in (2.3), so that M4 equals the constant given in (2.5).

5. A generalized Schur problem and its solution for the quartic case

A. A. Markov’s inequality (1.1) for the first derivative of Pn was generalized in
1892 by his half-brother V. A. Markov ([9], p. 93) to the k -th derivative and can be
restated as follows, see also ([10], p. 545), ([13], Theorem 2.24):

sup
ξ∈I

sup
Pn∈Bn

∣∣∣P (k)
n (ξ)

∣∣∣ =

k−1∏
j=0

n2 − j2

2j + 1
= T (k)

n (1), (1 ≤ k ≤ n), (5.1)

indicating that the maximum is attained if Pn = Tn and ξ = 1. Shadrin [16] has
analogously generalized Schur’s problem (1.2) to the k -th derivative. This generalized
problem can be stated as follows:
Determine, for 1 ≤ k ≤ n− 2 and n ≥ 4, an algebraic polynomial Pn = P ∗n of degree
≤ n which attains the maximum

sup
ξ∈I

sup
Pn∈Bn,ξ,k+1

∣∣∣P (k)
n (ξ)

∣∣∣ =

k−1∏
j=0

n2 − j2

2j + 1
Mn,k = T (k)

n (1)Mn,k, (5.2)

where Bn,ξ,k+1 = {Pn ∈ Bn : P
(k+1)
n (ξ) = 0} and Mn,k is a constant (depending on n

and k). Shadrin ([16], Proposition 4.4) found that, for k ≥ 2, this maximum is attained
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if ξ = 1 and Pn = P ∗n ∈ Bn,1,k+1 is a Zolotarev polynomial Zn (not necessarily a hard-

core one), or if ξ = ωk,n, the rightmost zero of T
(k+1)
n , and Pn = P ∗n = Tn, so that

altogether there holds:

sup
ξ∈I

sup
Pn∈Bn,ξ,k+1

∣∣∣P (k)
n (ξ)

∣∣∣ = max{|Z(k)
n (1)|, |T (k)

n (ωk,n)|}. (5.3)

We are now going to determine that maximum as well as an extremizer polynomial
for the quartic case n = 4 and for the second derivative, i.e., k = 2 = n − 2 (the
case k = 1 is settled in Proposition 4.1). It is well known that Zolotarev polynomials
Zn of degree n ≥ 4 on I satisfy ||Zn||∞ = 1 (maximum-norm) and exhibit at least
n equiripple points on I where the values ±1 are attained alternately, see ([16], p.
1190). Apart from sign and reflection, the Zolotarev polynomial Z4 takes on the role
(see also ([1], pp. 280), ([10], p. 406)):

(i) Z4 = T3, with T3(x) = −3x+ 4x3,

(ii) Z4 = T4, with T4(x) = 1− 8x2 + 8x4,

(iii) Z4 = T4,β , with T4,β(x) = T4

(
2x− β + 1

1 + β

)
where 1 < β ≤ 1 + 2 tan2

(
π
8

)
= 7− 4

√
2 = 1.3431457505... ,

(iv) Z4 = Z4,t, the hard-core Zolotarev polynomial, as given in (4.1).

We first calculate |Z(2)
4 (1)|, subject to the constraint Z

(3)
4 (1) = 0, and observe that

polynomials (i), (ii), (iii) cannot be extremal due to T
(3)
3 (1) = 24 6= 0, resp. T

(3)
4 (1) =

192 6= 0, resp. T
(3)
4,β (1) =

1536(3− β)

(1 + β)4
6= 0 if 1 < β ≤ 7− 4

√
2. For polynomial (iv) we

get, after some algebraic manipulations,

|Z(3)
4,t (1)| =

∣∣∣∣3(1 + t)6(−1 + t(−8 + 2t+ 3t3))

8t3(1 + t2)2

∣∣∣∣ . (5.4)

The numerator vanishes for 1 < t < 1 +
√

2 only if

t = t∗∗ =
1 +

√
2(−1 +

√
3)

√
3

= 1.2759444802... . (5.5)

Inserting this parameter t∗∗ into |Z(2)
4,t (1)| yields, again after some manipulations,

|Z(2)
4,t∗∗(1)| =

∣∣∣∣∣−12− 22√
3

+ 4

√
10

3
+ 2
√

3

∣∣∣∣∣ = 14.2729495641... . (5.6)

In view of (5.3), we have next to compare (5.6) to |T (2)
4 (ω2,4)|. Since the only, and

hence the rightmost, zero of T
(3)
4 is ω2,4 = 0, we get

|T (2)
4 (0)| = | − 16| = 16 > |Z(2)

4,t∗∗(1)|.
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So eventually we arrive at the identity

sup
ξ∈I

sup
P4∈B4,ξ,3

|P (2)
4 (ξ)| = max{|Z(2)

4 (1)|, |T (2)
4 (0)|} = 16

=
1∏
j=0

42 − j2

2j + 1
M4,2 = 80M4,2,

(5.7)

yielding M4,2 =
1

5
= 0.2. Summarizing, we have thus established

Proposition 5.1. Polynomial P ∗4 = T4 with T4(x) = 1− 8x2 + 8x4 is a sought-for ex-
tremal polynomial of degree four which solves, according to Shadrin ([16], Proposition
4.4), the generalized Schur problem (5.2) for n = 4 and k = 2. The corresponding

maximum sup
ξ∈I

sup
P4∈B4,ξ,3

|P (2)
4 (ξ)| = 80M4,2 is 16, so that M4,2 equals the constant 1

5 .

Shadrin ([16], Theorem 7.1) has added to (5.3) the following estimate which can
be viewed as an extension, to the k-th derivative, of Schur’s estimate (1.3):

sup
ξ∈I

sup
Pn∈Bn,ξ,k+1

|P (k)
n (ξ)| ≤

k−1∏
j=0

n2 − j2

2j + 1
λn,k = T (k)

n (1)λn,k (1 ≤ k ≤ n− 2), (5.8)

where λn,k =
1

k + 1
· n− 1

n− 1 + k
.

Thus for k = 2 and n = 4 we get λ4,2 =
1

3
· 3

5
=

1

5
= 0.2 = M4,2, see (5.7). However,

for k = 1 and n = 4 we get λ4,1 =
1

2
· 3

4
=

3

8
= 0.375 > M4 = 0.299..., see (2.5) and

([16], Remark 5.5).

6. Concluding remarks

1. In deducing (2.3) we have been guided by a computer algebra system which
the authors of [3], who have paved the way, certainly did not have at their disposal.

2. Our explicit power form representation ([12], p. 357) for the fourth hard-
core Zolotarev polynomial Z4,t remained unnoticed, and several related formulas have
been published afterwards, e.g. ([2], p. 184), ([15], p. 242), ([18], p. 721). Shadrin [15]
attributes his formula (with a different range of the parameter t) to V. A. Markov
[9] and remarks: But already for n = 4 it seems that nobody really believed that an
explicit form can be found. As a matter of fact it was, by V. Markov in 1892. In a
private communication Professor Shadrin kindly called our attention to p. 73 in [9]
from which his formula can be recovered. However, one has first to exploit the relation
4z = t3 + t (see p. 71 in [9]), then fix the parameter α and finally rearrange the Taylor
form of the given fourth-degree polynomial, centered at x0 = 2z, to the usual power
form centered at x0 = 0. It is under these side conditions that priority for the power
form representation of Z4,t belongs indeed to V. A. Markov [9].

3. In Section 4 we have alternatively deduced the Schur polynomial P ∗4 from the
explicit power form Z4,t(x) = ... as given, up to the sign, in ([12], p. 357). P ∗4 can
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likewise be deduced from the explicit power form Z4(x, t) = ... as given in ([15], p.

242), however instead of Z
(2)
4,t (1) = 0 (see (4.4)) one has then to set Z

(2)
4 (−1, t) = 0.

4. For the quartic Schur polynomial P ∗4 = Z4,t∗ we have determined its five
critical points y1, y2 ∈ I and A4, B4, C4 with 1 < A4 < B4 < C4. As Z4,t∗ is a special
case of the general quartic hard-core Zolotarev polynomial Z4,t it is desirable to know
the corresponding five (general) critical points of Z4,t as well. These are, as can be
verified by insertion: y1(t) = a(t) = a and y2(t) = b(t) = b as given in (4.3), and
furthermore

A4(t) =
1 + 4t+ 2t2 + 4t3 + t4

2(−1 + t)(1 + t)3
(6.1)

B4(t) =
1 + 2t+ 6t3 − t4

(−1 + t)(1 + t)3
(6.2)

C4(t) =
−1 + 6t+ 2t3 + t4

(−1 + t)(1 + t)3
. (6.3)

Choosing t = t∗ according to (4.6) takes us back to the five critical points of
P ∗4 = Z4,t∗ .

5. The optimal parameter t = t∗ according to (4.6) which selects the quartic

Schur polynomial Z4,t∗ among all Z4,t with 1 < t < 1 +
√

2 can alternatively be
determined as follows: In (4.11) replace A4 by A4(t), B4 by B4(t) and C4 by C4(t)
according to (6.1) - (6.3). Then solve this generalized equation (4.11) for the unknown
number t. The solution will turn out as t = t∗.

6. As some progress has been achieved in the computation of Zn,t for the next
higher polynomial degrees n ≥ 5 (see [5], [6], [7], [11]), we hope that we will be able to
extend our results to some n ≥ 5. Meanwhile, we have succeeded so for the case n = 5.
(The second Zolotarev case in the Erdös-Szegö solution to a Markov-type extremal
problem of Schur, J. Numer. Anal. Approx. Theory 46(2017), to appear).
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1. Introduction

In 1935, G. Grüss [7] proved the following inequality:∣∣∣∣∣∣ 1

b− a

b∫
a

f(x)g(x)dx− 1

b− a

b∫
a

f(x)dx
1

b− a

b∫
a

g(x)dx

∣∣∣∣∣∣ (1.1)

≤ 1

4
(Φ1 − ϕ1)(Φ2 − ϕ2),

provided that f and g are two integrable function on [a, b] satisfying the condition

ϕ1 ≤ f(x) ≤ Φ1 and ϕ2 ≤ g(x) ≤ Φ2 for all x ∈ [a, b]. (1.2)

The constant 1
4 is best possible.

In 1938, Ostrowski established the following interesting integral inequality for
differentiable mappings with bounded derivatives [9]:

Theorem 1.1 (Ostrowski inequality). Let f : [a, b] → R be a differentiable map-
ping on (a, b) whose derivative f ′ : (a, b) → R is bounded on (a, b) , i.e. ‖f ′‖∞ :=
sup

t∈(a,b)

|f ′(t)| <∞. Then, we have the inequality∣∣∣∣∣∣f(x)− 1

b− a

b∫
a

f(t)dt

∣∣∣∣∣∣ ≤
[

1

4
+

(
x− a+b

2

)2
(b− a)

2

]
(b− a) ‖f ′‖∞ , (1.3)
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for all x ∈ [a, b]. The constant 1
4 is the best possible.

In 1882, P. L. Čebyšev [2] gave the following inequality:

|T (f, g)| ≤ 1

12
(b− a)2 ‖f ′‖∞ ‖g

′‖∞ , (1.4)

where f, g : [a, b] → R are absolutely continuous function, whose first derivatives f ′

and g′ are bounded,

T (f, g) (1.5)

=
1

b− a

b∫
a

f(x)g(x)dx−

 1

b− a

b∫
a

f(x)dx

 1

b− a

b∫
a

g(x)dx


and ‖.‖∞ denotes the norm in L∞[a, b] defined as ‖p‖∞ = ess sup

t∈[a,b]

|p(t)| .

The following result of Grüss type was proved by Dragomir and Fedotov [4]:

Theorem 1.2. Let f, u : [a, b]→ R be such that u is L-Lipshitzian on [a, b], i.e,

|u(x)− u(y)| ≤ L |x− y| for all x ∈ [a, b], (1.6)

f is Riemann integrable on [a, b] and there exist the real numbers m,M so that

m ≤ f(x) ≤M for all x ∈ [a, b]. (1.7)

Then we have the inequality,∣∣∣∣∣∣
b∫

a

f(x)du(x)− u(b)− u(a)

b− a

b∫
a

f(x)dx

∣∣∣∣∣∣ ≤ 1

2
L(M −m)(b− a).

From [8], if f : [a, b] → R is differentiable on (a, b) with the first derivative f ′

integrable on [a, b], then Montgomery identity holds:

f(x) =
1

b− a

b∫
a

f(t)dt+

b∫
a

P (x, t)f ′(t)dt, (1.8)

where P (x, t) is the Peano kernel defined by

P (x, t) =

{ t−a
b−a , a ≤ t ≤ x
t−b
b−a , x < t ≤ b.

In [5], Dragomir and Wang proved following Ostrowski-Grüss type inequality using
the inequality (1.1) and Montgomery identity (1.8):

Theorem 1.3. Let f : I ⊆ R→ R be a differantiable mapping in I◦ and let a, b ∈ I◦with
a < b. If f ∈ L1 [a, b] and

ϕ3 ≤ f ′(x) ≤ Φ3, ∀x ∈ [a, b] ,



An inequality of Ostrowski-Grüss type for double integrals 165

then we have the following inequality∣∣∣∣∣∣f(x)− 1

b− a

b∫
a

f(t)dt− f(b)− f(a)

b− a

(
x− a+ b

2

)∣∣∣∣∣∣ (1.9)

≤ 1

4
(b− a)(Φ3 − ϕ3),

for all x ∈ [a, b] .

Barnett and Dragomir established following Ostrowski inequality for double in-
tegrals in [1]:

Theorem 1.4. Let f : [a, b] × [c, d] → R be a continuous on [a, b] × [c, d] , fxy = ∂2f
∂x∂y

exists on (a, b)× (c, d) , and is bounded, i.e.,

‖fxy‖∞ = sup
(x,y)∈(a,b)×(c,d)

∣∣∣∣∂2f(x, y)

∂x∂y

∣∣∣∣ <∞
then we have the inequality∣∣∣∣∣∣

b∫
a

d∫
c

f(t, s)dsdt−

(b− a)

d∫
c

f(x, s)ds (1.10)

+ (d− c)
b∫

a

f(t, y)dt− (b− a) (d− c) f(x, y)

∣∣∣∣∣∣
≤

[
1

4
(b− a)

2
+

(
x− a+ b

2

)2
][

1

4
(d− c)2

+

(
y − c+ d

2

)2
]
‖fxy‖∞

for all (x, y) ∈ [a, b]× [c, d] .

In [1], the inequality (1.10) is established by the use of integral identity involving
Peano kernels. In [10], Pachpatte obtained an inequality in the view (1.10) by using
elementary analysis. The interested reader is also refered to ([1], [6], [10],[11],[13]-[15])
for Ostrowski type inequalities in several independent variables.

Recently, Sarikaya and Kiris have proved the following Grüss type inequality for
double integrals in [12]:

Theorem 1.5. Let f, g : [a, b] × [c, d] → R be two functions defined and integrable on
[a, b]× [c, d] . Then for

ϕ ≤ f(x, y) ≤ Φ and γ ≤ g(x, y) ≤ Γ. for all (x, y) ∈ [a, b]× [c, d]
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we have∣∣∣∣∣∣ 1

(b− a) (d− c)

b∫
a

d∫
c

f(x, y)g(x, y)dydx (1.11)

−

 1

(b− a) (d− c)

b∫
a

d∫
c

f(x, y)dydx

 1

(b− a) (d− c)

b∫
a

d∫
c

g(x, y)dydx

∣∣∣∣∣∣
≤ 1

4
(Φ− ϕ)(Γ− γ).

Moreover, Cerone and Dragomir [3] extended Gruss type inequalities for
Lebesgue integrals on measurable spaces. This includes domaind from the plane pro-
vided in [12].

In this work, using the inequality (1.11), we will obtain an Ostrowski-Grüss type
inequality for functions of two independent variables.

2. Main results

First, we give the following notations to simplify the presentation of some inter-
vals.

∆1 = [a, x]× [c, y] , ∆2 = [a, x]× [y, d] ,

∆3 = [x, b]× [c, y] , ∆4 = [x, b]× [y, d] .

Theorem 2.1. Let f : ∆ : [a, b] × [c, d] → R be a continuous on ∆, fxy = ∂2f
∂x∂y exists

on ∆◦. If f integrable and

ϕ ≤ fxy(x, y) ≤ Φ, ∀(x, y) ∈ ∆

then we have the following inequality∣∣∣∣∣∣ 1

(b− a) (d− c)

b∫
a

d∫
c

f(t, s)dsdt−

 1

(d− c)

d∫
c

f(x, s)ds (2.1)

+
1

(b− a)

b∫
a

f(t, y)dt− f(x, y)


−f(b, d)− f(b, c)− f(a, d) + f(a, c)

(b− a) (d− c)

(
x− a+ b

2

)(
y − c+ d

2

)∣∣∣∣
≤ 1

4
(P − p) (Φ− ϕ)

where

P = max {(x− a) (y − c) , (b− x) (d− y)}
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and

p = min {(x− a) (y − d) , (x− b) (y − c)}

for all (x, y) ∈ ∆.

Proof. Define the kernel p(x, t; y, s) by

p(x, t; y, s) :=


(t− a) (s− c) , if (t, s) ∈ [a, x]× [c, y]
(t− a) (s− d) , if (t, s) ∈ [a, x]× (y, d]
(t− b) (s− c) , if (t, s) ∈ (x, b]× [c, y]
(t− b) (s− d) , if (t, s) ∈ (x, b]× (y, d] .

Then, we have

b∫
a

d∫
c

p(x, t; y, s)fts(t, s)dsdt (2.2)

=

x∫
a

y∫
c

(t− a)(s− c)fts(t, s)dsdt+

x∫
a

d∫
y

(t− a)(s− d)fts(t, s)dsdt

+

b∫
x

y∫
c

(t− b)(s− c)fts(t, s)dsdt+

b∫
x

d∫
y

(t− b)(s− d)fts(t, s)dsdt

= I1 + I2 + I3 + I4.

Let us calculate the integrals I1, I2, I3 and I4. Firstly, we have the equality

I1 =

x∫
a

y∫
c

(t− a)(s− c)fts(t, s)dsdt (2.3)

=

x∫
a

(t− a)

(y − c)ft(t, y)−
y∫

c

ft(t, s)ds

 dt
= (y − c)

x∫
a

(t− a)ft(t, y)dt−
y∫

c

 x∫
a

(t− a)ft(t, s)dt

 ds

= (y − c)

(x− a)f(x, y)−
x∫

a

f(t, y)dt

− y∫
c

(x− a)f(x, s)−
x∫

a

f(t, s)dt

 ds
= (x− a)(y − c)f(x, y)− (y − c)

x∫
a

f(t, y)dt− (x− a)

y∫
c

f(x, s)ds+

x∫
a

y∫
c

f(t, s)dsdt.
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Also, similar computations we have the equalities

I2 =

x∫
a

d∫
y

(t− a)(s− d)fts(t, s)dsdt (2.4)

= (x− a)(d− y)f(x, y)− (d− y)

x∫
a

f(t, y)dt− (x− a)

d∫
y

f(x, s)ds+

x∫
a

d∫
y

f(t, s)dsdt,

I3 =

b∫
x

y∫
c

(t− b)(s− c)fts(t, s)dsdt (2.5)

= (b− x)(y − c)f(x, y)− (y − c)
b∫

x

f(t, y)dt− (b− x)

y∫
c

f(x, s)ds+

b∫
x

y∫
c

f(t, s)dsdt,

and

I4 =

b∫
x

d∫
y

(t− b)(s− d)fts(t, s)dsdt (2.6)

= (b− x)(d− y)f(x, y)− (d− y)

b∫
x

f(t, y)dt− (b− x)

d∫
y

f(x, s)ds+

b∫
x

d∫
y

f(t, s)dsdt.

If we substitute the equalities (2.3)-(2.6) in (2.2), then we have

b∫
a

d∫
c

p(x, t; y, s)fts(t, s)dsdt (2.7)

= (b− a) (d− c) f(x, y)− (b− a)

d∫
c

f(x, s)ds− (d− c)
b∫

a

f(t, y)dt+

b∫
a

d∫
c

f(t, s)dsdt.

Applying Theorem 1.5 to mappings p(x, .; y, .) and fts(., .), we establish∣∣∣∣∣∣ 1

(b− a) (d− c)

b∫
a

d∫
c

p(x, t; y, s)fts(t, s)dsdt (2.8)

−

 1

(b− a) (d− c)

b∫
a

d∫
c

p(x, t; y, s)dsdt


×

 1

(b− a) (d− c)

b∫
a

d∫
c

fts(t, s)dsdt

∣∣∣∣∣∣
≤ 1

4
(Φ− ϕ)(Γ− γ).
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where

Γ = sup
(t,s)∈∆

p(x, t; y, s) (2.9)

= max

{
sup

(t,s)∈∆1

(t− a) (s− c) , sup
(t,s)∈∆2

(t− a) (s− d) ,

sup
(t,s)∈∆3

(t− b) (s− c) , sup
(t,s)∈∆4

(t− b) (s− d)

}

= max {(x− a) (y − c) , (b− x) (d− y)} = P,

and

γ = inf
(t,s)∈∆

p(x, t; y, s) (2.10)

= min

{
inf

(t,s)∈∆1

(t− a) (s− c) , inf
(t,s)∈∆2

(t− a) (s− d) ,

inf
(t,s)∈∆3

(t− b) (s− c) , inf
(t,s)∈∆4

(t− b) (s− d)

}
= min {(x− a) (y − d) , (x− b) (y − c)} = p.

Also, we have the equalities

b∫
a

d∫
c

p(x, t; y, s)dsdt (2.11)

=

x∫
a

y∫
c

(t− a)(s− c)dsdt+

x∫
a

d∫
y

(t− a)(s− d)dsdt

+

b∫
x

y∫
c

(t− b)(s− c)dsdt+

b∫
x

d∫
y

(t− b)(s− d)dsdt

=
(x− a)

2
(y − c)2

4
− (x− a)

2
(d− y)

2

4

− (b− x)
2

(y − c)2

4
+

(b− x)
2

(d− y)
2

4

=

[
(x− a)

2 − (b− x)
2
] [

(y − c)2 − (d− y)
2
]

4

= (b− a) (d− c)
(
x− a+ b

2

)(
y − c+ d

2

)
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and

b∫
a

d∫
c

fts(t, s)dsdt = f(b, d)− f(b, c)− f(a, d) + f(a, c). (2.12)

If we put the equalities (2.7) and (2.9)-(2.12) in (2.8), then we obtain the desired
inequality (2.1). �

Corollary 2.2. With the assumptions in Theorem 2.1, if |fxy(x, y)| ≤M for all (x, y) ∈
[a, b]× [c, d] and some positive constant M, then we have∣∣∣∣∣∣ 1

(b− a) (d− c)

b∫
a

d∫
c

f(t, s)dsdt

−

 1

(d− c)

d∫
c

f(x, s)ds+
1

(b− a)

b∫
a

f(t, y)dt− f(x, y)


−f(b, d)− f(b, c)− f(a, d) + f(a, c)

(b− a) (d− c)

(
x− a+ b

2

)(
y − c+ d

2

)∣∣∣∣
≤ 1

2
(P − p)M

where

P = max {(x− a) (y − c) , (b− x) (d− y)}

and

p = min {(x− a) (y − d) , (x− b) (y − c)}

for all (x, y) ∈ [a, b]× [c, d] .

Corollary 2.3. Under assumptions of Theorem 2.1 with x = a+b
2 and y = c+d

2 , we
have the following inequality∣∣∣∣∣∣ 1

(b− a) (d− c)

b∫
a

d∫
c

f(t, s)dsdt−

 1

(d− c)

d∫
c

f

(
a+ b

2
, s

)
ds

+
1

(b− a)

b∫
a

f

(
t,
c+ d

2

)
dt− f

(
a+ b

2
,
c+ d

2

)∣∣∣∣∣∣
≤ 1

8
(b− a) (d− c) (Φ− ϕ) .
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Corollary 2.4. Under assumption of Theorem 2.1 with x = b and y = d, we get the
inequality ∣∣∣∣∣∣ 1

(b− a) (d− c)

b∫
a

d∫
c

f(t, s)dsdt

−

 1

(d− c)

d∫
c

f(b, s)ds+
1

(b− a)

b∫
a

f(t, d)dt− f(b, d)


−f(b, d)− f(b, c)− f(a, d) + f(a, c)

4

∣∣∣∣
≤ 1

4
(b− a) (d− c) (Φ− ϕ) .

3. Applications for cubature formulae

Let us consider the arbitrary division In : a = x0 < x1 < ... < xn = b, and
Jm : c = y0 < y1 < ... < ym = d, hi := xi+1−xi (i = 0, ..., n− 1) , and lj := yj+1−yj
(j = 0, ...,m− 1) ,

υ(h) := max {hi| i = 0, ..., n− 1} ,
µ(l) := max { lj | j = 0, ...,m− 1} .

Then, the following theorem holds.

Theorem 3.1. Let f : [a, b] × [c, d] → R be as in Theorem 2.1 and ξi ∈ [xi, xi+1]
(i = 0, ..., n− 1) , ηj ∈ [yj , yj+1] (j = 0, ...,m− 1) be intermediate points. Then we
have the cubature formula:

b∫
a

d∫
c

f(t, s)dsdt (3.1)

=

n−1∑
i=0

m−1∑
j=0

hi

yj+1∫
yj

f(ξi, s)ds+

n−1∑
i=0

m−1∑
j=0

lj

xi+1∫
xi

f(t, ηj)dt

−
n−1∑
i=0

m−1∑
j=0

hiljf(ξi, ηj)

+

n−1∑
i=0

m−1∑
j=0

[f (xi+1, yj+1)− f (xi+1, yj)− f (xi, yj+1) + f (xi, yj)]

×
(
ξi −

xi + xi+1

2

)(
ηj −

yj + yj+1

2

)
+R(ξ, η, In, Jm, f).
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where the remainer term R(ξ, η, In, Jm, f) satisfies the estimation

|R(ξ, η, In, Jm, f)| ≤ 1

4
υ(h)µ(l) max

i,j
(Pij − pij) (Φ− ϕ) (3.2)

where

Pij = max {(ξi − xi) (ηj − yj) , (xi+1 − ξi) (yj+1 − ηj)} ,

and

pij = min {(ξi − xi) (ηj − yj+1) , (ξi − xi+1) (ηj − yj)} .

Proof. Aplying Theorem 2.1 on the bidimentional interval [xi, xi+1] × [yj , yj+1] , we
get ∣∣∣∣∣∣∣

xi+1∫
xi

yj+1∫
yj

f(t, s)dsdt (3.3)

−

hi yj+1∫
yj

f(ξi, s)ds+ lj

xi+1∫
xi

f(t, ηj)dt− hiljf(ξi, ηj)


− [f (xi+1, yj+1)− f (xi+1, yj)− f (xi, yj+1) + f (xi, yj)]

×
(
ξi −

xi + xi+1

2

)(
ηj −

yj + yj+1

2

)∣∣∣∣
≤ 1

4
hilj (Pij − pij) (Φij − ϕij)

where

Φij := sup
(t,s)∈[xi,xi+1]×[yj ,yj+1]

|fts(t, s)| , ϕij := inf
(t,s)∈[xi,xi+1]×[yj ,yj+1]

|fts(t, s)|

for all i = 0, 1, ..., n− 1; j = 0, 1, ...,m− 1.

Summing the inequality (3.3) over i from 0 to n− 1 and j from 0 to m− 1 and
using the generalized triangle inequality, we get

|R(ξ, η, In, Jm, f)| ≤ 1

4

n−1∑
i=0

m−1∑
j=0

hilj (Pij − pij) (Φij − ϕij)

≤ 1

4
υ(h)µ(l) max

i,j
(Pij − pij) max

ij
(Φij − ϕij)

n−1∑
i=0

m−1∑
j=0

1

=
nm

4
υ(h)µ(l) max

i,j
(Pij − pij) (Φ− ϕ) .

This completes the proof. �
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Abstract. In this paper, we investigate majorization properties for certain classes
of analytic functions defined by convolution structure. Also we point out some
new and known consequences of our main result.
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1. Introduction

Let f(z) and g(z) be analytic in the open unit disc U = {z ∈ C : |z| < 1}.
For analytic function f(z) and g(z) in U , we say that f(z) is majorized by g(z)

in U (see [10]) and write
f(z) << g(z) (z ∈ U), (1.1)

if there exists a function ϕ(z), analytic in U such that

|ϕ(z)| ≤ 1 and f(z) = ϕ(z)g(z) (z ∈ U). (1.2)

It may be noted that (1.1) is closely related to the concept of quasi-subordination
between analytic functions.

If f(z) and g(z) are analytic functions in U , we say that f(z) is subordinate to
g(z), written symbolically as f(z) ≺ g(z) if there exists a Schwarz function w, which
(by definition) is analytic in U with w(0) = 0 and |w(z)| < 1 for all z ∈ U, such that
f(z) = g(w(z)), z ∈ U. Furthermore, if the function g(z) is univalent in U, then we
have the following equivalence, (see [11, p.4]):

f(z) ≺ g(z)⇔ f(0) = g(0) and f(U) ⊂ g(U).

Let A (p) denote the class of functions f(z) of the form:

f(z) = zp +

∞∑
k=p+1

akz
k, ( p ∈ N = {1, 2, ......}) (1.3)
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which are analytic and p−valent in the open unit disc. We note that A (1) = A. Let
g(z) ∈ A (p) , be given by

g(z) = zp +

∞∑
k=p+1

bkz
k,

the Hadamard product (or convolution) of f(z) and g(z) is given by

(f ∗ g)(z) = zp +

∞∑
k=p+1

akbkz
k = (g ∗ f)(z). (1.4)

For λ, ` > 0, p ∈ N,m ∈ N0 = N ∪ {0} and f (z) , g(z) ∈ A (p) , A. O. Mostafa,
[12] defined the linear operator Dm

λ,`,p (f ∗ g) as follows:

Dm
p,`,λ (f ∗ g) = zp +

∞∑
k=p+1

[
p+ `+ λ (k − p)

p+ `

]m
akbkz

k. (1.5)

From (1.5), it is easy to verify that ( see [12]),

λz
(
Dm
λ,`,p(f ∗ g)(z)

)′
= (`+ p)Dm+1

λ,`,p(f ∗g)(z)− [p (1− λ) + `]Dm
λ,`,p(f ∗g)(z). (1.6)

We note that:
(i) For bk = 1 or g(z) = zp

1−z we have Dm
λ,`,pf(z) = Imp (λ, `)f(z), where the

operator Imp (λ, `) was introduced and studied by Cătaş [4], which contains intern the
operators Dm

p , (see [2] and [8]) and Dm
λ (see [1]).

(ii) For bk =
(α1)k−p...(αq)k−p

(β1)k=p...(βs)k−p(1)k−p
, the operator

Dm
λ,`,p(f ∗ g)(z) = Im,`p,q,r,λ(α1, β1)f(z),

where the operator Im,`p,q,r,λ(α1, β1)f(z) was introduced and studied by El-Ashwah and

Aouf [6], α1, α2, ..., αq and β1, β2, ..., βs are real or complex number (βj ∈ C\Z−0 =
{0,−1,−2, ...} ; j = 1, ..., s; )(q ≤ s+ 1; q, s ∈ N0, p ∈ N; z ∈ U) and

(θ)ν =
Γ(θ + ν)

Γ(θ)
=

{
1 (ν = 0; θ ∈ C∗ = C\{0}),
θ(θ − 1)...(θ + ν − 1) (ν ∈ N; θ ∈ C).

Also, for many special operators of the operator Im,`p,q,r,λ(α1, β1)f(z) (see [6]).

(iii) For m = 0, bk =
(α1)k−p...(αq)k−p

(β1)k=p...(βs)k−p(1)k−p
, the operator

Dm
λ,`,p(f ∗ g)(z) = Sjp,q,s(γ;α1)f(z),

where the operator Sjp,q,s(γ;α1)f(z), was introduced and studied by El-Ashwah [5].

(iv) For m = 0 and bk = Γ(p+α+β)Γ(k+β)
Γ(p+β)Γ(k+α+β) , the operator Dm

p,`,λ(f ∗g)(z) = Qαp,β(f)

(α ≥ 0, β > −1, p ∈ N), where the operator Qαp,β was introduced by Liu and Owa [9].

For h(z) given by

h(z) = zp +

∞∑
k=p+1

ckz
k
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A function f(z) ∈ A (p) is said to be in the class Sm,jλ,`,p(γ) of p−valent functions of
complex order γ 6= 0 in U, if and only if

Re

{
1 +

1

γ

(
z(Dm

λ,`,p(f ∗ h)(z))(j+1)

(Dm
λ,`,p(f ∗ h)(z))(j)

− p+ j

)}
> 0

(p ∈ N; j ∈ N0 = N ∪ {0}; `, λ ≥ 0; γ ∈ C∗; z ∈ U). (1.7)

Clearly, we have the following relationships:
(i) S0,0

λ,`,1(γ) = S(γ)(γ ∈ C∗),
(ii) S0,1

λ,`,1(γ) = κ(γ) (γ ∈ C∗),
(iii) S0,0

λ,`,1(1− α) = S∗(α) (0 ≤ α < 1).

The classes S(γ) and κ(γ) are classes of starlike and convex functions of complex
order γ 6= 0 in U which were studied by Nasr and Aouf [13] and S∗(α) is the class of
starlike functions of order α in U.

Also, for m = 0 the operator Sjp(h; γ) was introduced and studied by El-Ashwah
and Aouf [7].
Definition 1.1. Let −1 ≤ B < A ≤ 1, p ∈ N; j ∈ N0, γ ∈ C∗,

|γ(A−B) + (p− j)B| < (p− j), f ∈ A (p) .

Then f ∈ Sm,jλ,`,p (γ;A,B), the class of p−valent functions of complex order γ in U if
and only if {

1 +
1

γ

(
z(Dm

λ,`,p(f ∗ h)(z))(j+1)

(Dm
λ,`,p(f ∗ h)(z))(j)

− p+ j

)}
≺ 1 +Az

1 +Bz
. (1.8)

A majorization problem for the subclasses of analytic function has recently been
investigated by Altintas et al. [3] and MacGregor [11]. In this paper we investigate

majorization problem for the class Sm,jλ,`,p (γ;A,B) and some related subclasses.

2. Main results

Unless otherwise mentioned we shall assume throughout the paper that, −1 ≤
B < A ≤ 1, γ ∈ C∗, `, λ ≥ 0, p ∈ N and m, j ∈ N0.
Theorem 2.1. Let the function f ∈ A(p) and suppose that g ∈ Sm,jλ,`,p (γ;A,B) . If

(Dm
λ,`,p(f ∗ h)(z))(j) is majorized by (Dm

λ,`,p(g ∗ h)(z))(j) in U, then∣∣∣(Dm+1
λ,`,p(f ∗ h)(z))(j)

∣∣∣ ≤ ∣∣∣(Dm+1
λ,`,p(g ∗ h)(z))(j)

∣∣∣ (|z| < r1) , (2.1)

where r1 = r1(p, γ, λ, `, A,B) is the smallest positive root of the equation

|γλ(A−B) + (p+ `)B| r3 − [2λ |B|+ (p+ `)] r2−
[|γλ(A−B) + (p+ `)B|+ 2λ] r + (p+ `) = 0. (2.2)

Proof. Since (g ∗ h)(z) ∈ Sm,jλ,`,p (γ;A,B) , we find from (1.8) that

1 +
1

γ

(
z(Dm

λ,`,p(g ∗ h)(z))(j+1)

(Dm
λ,`,p(g ∗ h)(z))(j)

− p+ j

)
=

1 +Aw(z)

1 +Bw(z)
, (2.3)
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where w is analytic in U with w(0) = 0 and |w(z)| < 1 (z ∈ U). From (2.3), we have

z(Dm
λ,`,p(g ∗ h)(z))(j+1)

(Dm
λ,`,p(g ∗ h)(z))(j)

=
(p− j) + [γ(A−B) + (p− j)B]w(z)

1 +Bw(z)
. (2.4)

In view of

λz
(
Dm
λ,`,p(f ∗ g)(z)

)(j+1)
= (p+ `) (Dm+1

λ,`,p(f ∗ g)(z))(j)

− [p (1− λ) + λj + `] (Dm
λ,`,p(f ∗ g)(z))(j) (2.5)

0 ≤ j ≤ p; p ∈ N, λ > 0; z ∈ U,
(2.4) immediately yields the following inequality:∣∣∣(Dm

λ,`,p(g ∗ h)(z))(j)
∣∣∣ ≤ (p+ `)(1 + |B| |z|)

(p+ `)− |γλ(A−B) + (p+ `)B| |z|

∣∣∣(Dm+1
λ,`,p(g ∗ h)(z))(j)

∣∣∣ .
(2.6)

Next, since (Dm
λ,`,p(f ∗ h)(z))(j) is majorized by (Dm

λ,`,p(g ∗ h)(z))(j) in U, from (1.2),
we have

(Dm
λ,`,p(f ∗ h)(z))(j) = ϕ(z)(Dm

λ,`,p(g ∗ h)(z))(j). (2.7)

Differentiating (2.7) with respect to z, we have

z(Dm
λ,`,p(f ∗ h)(z))(j+1) = zϕ

′
(z)(Dm

λ,`,p(g ∗ h)(z))(j) + zϕ(z)(Dm
λ,`,p(g ∗ h)(z))(j+1).

(2.8)
From (2.5) and (2.8), we have

(Dm+1
λ,`,p(f ∗h)(z))(j) =

λz

p+ `
ϕ
′
(z)(Dm

λ,`,p(g∗h)(z))(j) +ϕ(z)(Dm+1
λ,`,p(g∗h)(z))(j). (2.9)

Thus, by noting that ϕ(z) satisfies the inequality (see [14]),∣∣∣ϕ′(z)∣∣∣ ≤ 1− |ϕ(z)|2

1− |z|2
(z ∈ U),

we see that ∣∣∣(Dm+1
λ,`,p(f ∗ h)(z))(j)

∣∣∣
≤

(
|ϕ(z)|+ 1− |ϕ(z)|2

1− |z|2
.

λ |z| (1 + |B| |z|)
(p+ `)− |γλ(A−B) + (p+ `)B| |z|

)∣∣∣(Dm+1
λ,`,p(g ∗ h)(z))(j)

∣∣∣ ,
(2.10)

which upon setting

|z| = r and |ϕ(z)| = ρ (0 ≤ ρ ≤ 1),

leads us to the inequality ∣∣∣(Dm+1
λ,`,p(f ∗ h)(z))(j)

∣∣∣
≤ Θ(ρ)

(1− r2)((p+ `)− |γλ(A−B) + (p+ `)B| r)

∣∣∣(Dm+1
λ,`,p(g ∗ h)(z))(j)

∣∣∣ ,
where

Θ(ρ) = −rλ (1 + |B| r) ρ2 + (1− r2) [(p+ `)− |γλ(A−B) + (p+ `)B| r] ρ
+rλ (1 + |B| r) , (2.11)
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takes its maximum value at ρ = 1, with r1 = r1(p, γ, λ, `, A,B), where
r1(p, γ, λ, `, A,B) is the smallest positive root of (2.2). Therefore the function Φ(ρ)
defined by

Φ(ρ) = −σλ (1 + |B|σ) ρ2 + (1− σ2) [(p+ `)− |γλ(A−B) + (p+ `)B|σ] ρ

+σλ (1 + |B|σ) (2.12)

is an increasing function on the interval 0 ≤ ρ ≤ 1, so that

Φ(ρ) ≤ Φ(1) = (1− σ2) [(p+ `)− |γ(A−B) + (p+ `)B|σ] (2.13)

(0 ≤ ρ ≤ 1; 0 ≤ σ ≤ r0(p, γ, j, A,B)) .

Hence upon setting ρ = 1 in (2.12), we conclude that (2.1) holds true for |z| ≤
r1 = r1(p, γ, λ, `, A,B), where r1(p, γ, λ, `, A,B), is the smallest positive root of (2.2).
This completes the proof of Theorem 1.

Putting A = 1 and B = −1 in Theorem 1, we obtain the following result.
Corollary 2.2. Let the function f ∈ A(p) and suppose that g ∈ Sm,jλ,`,p (γ) .

If (Dm
λ,`,p(f ∗ h)(z))(j) is majorized by (Dm

λ,`,p(g ∗ h)(z))(j) in U, then∣∣∣(Dm+1
λ,`,p(f ∗ h)(z))(j)

∣∣∣ ≤ ∣∣∣(Dm+1
λ,`,p(g ∗ h)(z))(j)

∣∣∣ (|z| < r1) ,

where r1 = r1(p, γ, λ, `) is given by

r1 = r1(p, γ, λ, `) =
k −

√
k2 − 4(p+ `) |2γλ− (p+ `)|

2 |2γλ− (p+ `)|
, (2.14)

where k = 2λ+ (p+ `)) + |2γλ− (p+ `))| .
Putting A = 1, B = −1 and p = j = 1 in Theorem 1, we obtain the following

result.
Corollary 2.3. Let the function f ∈ A and suppose that g ∈ Sm,0λ,` (γ) .

If (Dm
λ,`(f ∗ h)(z)) is majorized by (Dm

λ,`(g ∗ h)(z)) in U, then∣∣∣(Dm+1
λ,` (f ∗ h)(z))

∣∣∣ ≤ ∣∣∣(Dm+1
λ,` (g ∗ h)(z))

∣∣∣ (|z| < r2) ,

where r2 = r2(γ, λ, `) is given by

r2 = r2(γ, λ, `) =
k −

√
k2 − 4(1 + `) |2γλ− (1 + `)|

2 |2γλ− (1 + `)|
, (2.15)

where k = 2λ+ (1 + `)) + |2γλ− (1 + `))| .
Putting A = λ = 1, B = −1,m = ` = 0, and h(z) = zp

1−z (or ck+p = 1) in
Theorem 1, we obtain the following result.
Corollary 2.4. Let the function f ∈ A(p) and suppose that g ∈ Sp. If f(z) is majorized
by g(z) in U, then

|f ′(z)| ≤ |g′(z)| (|z| < r3) ,

where r3 = r3(p, γ) is given by

r3 = r3(p; γ) =
k −

√
k2 − 4p |2γ − p|
2 |2γ − p|

,

where k = 2 + p+ |2γ − p| .
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Putting γ = 1 in Corollary 3, we obtain the following result.
Corollary 2.5. Let the function f ∈ A(p) and suppose that g ∈ Sp (γ) . If f(z) is
majorized by g(z) in U, then

|f ′(z)| ≤ |g′(z)| (|z| < r4) ,

where r4 is given by

r4 = r4(p) =
k −

√
k2 − 4p |2− p|
2 |2− p|

,

where k = 2 + p+ |2− p|
Remarks 2.6. (i) Putting p = 1 in Corollary 3 we obtain the results obtained by
Altintas et al. [3],
(ii) Putting p = 1 in Corollary 4 we obtain the results obtained by MacGregor [10].

Acknowledgements. The author thank the referees for their valuable suggestions to
improve the paper.
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Abstract. In this paper, the estimate for the third Hankel determinant H3,1(f)

of Taylor coefficients of function f(z) = z+

∞∑
n=2

anz
n, belonging to certain classes

of analytic functions in the open unit disk D, are investigated.
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1. Introduction

Let H(D) denote the class of analytic functions in the open unit disk

D = {z ∈ C : |z| < 1}

and A be the class of functions f ∈ H(D), having the form

f(z) = z +

∞∑
n=2

an z
n, z ∈ D, (1.1)

with the standard normalization f(0) = 0, f ′(0) = 1. We denote by S, the subclass
of A consisting of functions which are also univalent in D, and P denotes the class of
functions p ∈ H(D) with <(p(z)) > 0, z ∈ D.

A function f ∈ A is called starlike (with respect to origin 0), if f is univalent in
D and f(D) is a starlike domain. We denote this class of starlike functions by S∗. A
function f ∈ S maps the unit disk D onto a convex domain is called convex function,
and this class of functions is denoted by K. LetM(λ) be the subclass of A consisting
of functions f(z) which satisfy the inequality

<
(
zf ′(z)

f(z)

)
< λ, z ∈ D, (1.2)
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for some λ (λ > 1). And let N (λ) be the subclass of A consisting of functions f(z) if
and only if zf ′(z) ∈M(λ), i.e. f(z) satisfy the inequality

<
(

1 +
zf ′′(z)

f ′(z)

)
< λ, z ∈ D, (1.3)

for some λ (λ > 1). These classes M(λ) and N (λ) were investigated recently by
Nishiwaki and Owa [19] (see also [23]). For 1 < λ ≤ 4/3, the classes M(λ) and N (λ)
were investigated by Uralegaddi et al. [32].

Throughout the present paper, by M we always mean the class of functions
M(3/2), and by N we always mean the class of functions N (3/2). Ozaki [24] proved
that functions inN are univalent in D. Moreover, if f ∈ N , then (see e.g. [11, Theorem
1] and [21, p. 196]) one have

zf ′(z)

f(z)
≺ g(z) =

2(1− z)
2− z

, z ∈ D,

where ≺ denotes the subordination [18]. We see that g above is univalent in D and
maps D onto the disk |w − (2/3)| < 2/3. Thus, functions in M are starlike in D.

For f ∈ A of the form (1.1), a classical problem settled by Fekete and Szegö [9]
is to find the maximum value of the coefficient functional Φλ(f) := a3 − λa2

2 for each
λ ∈ [0, 1], over the function f ∈ S. By applying the Löewner method they proved that

max
f∈S
|Φλ(f)| =

{
1 + 2 exp

(
−2λ
1−λ

)
, λ ∈ [0, 1),

1, λ = 1.

The problem of calculating the maximum of the coefficient functional Φλ(f) for vari-
ous compact subfamilies of A, as well as λ being an arbitrary real or complex number,
has been studied by many authors (see e.g. [1, 12, 13, 17, 30, 31]).

We denote by Hq,n(f) where n, q ∈ N = {1, 2, · · · }, the Hankel determinant of
functions f ∈ A of the form (1.1), which is defined by

Hq,n(f) =

∣∣∣∣∣∣∣∣∣
an an+1 · · · an+q−1

an+1 an+2 · · · an+q

...
...

...
...

an+q−1 an+q · · · an+2(q−1)

∣∣∣∣∣∣∣∣∣ (a1 = 1). (1.4)

The Hankel determinant Hq,n(f) has been studied by several authors including Cantor
[6], Noonan and Thomas [20], Pommerenke [26, 25], Hayman [10], Ehrenborg [8], which
are useful, in showing that a function of bounded characteristic in D.

Indeed, H2,1(f) = Φ1(f) is the Fekete-Szegö coefficient functional. Many authors
have studied the problem of calculating max

f∈F
|H2,2(f)| for various subfamily F of the

class f ∈ A (see e.g. [2, 4, 14]). Recently, several authors including Babalola [3],
Bansal et al. [5], Prajapat et al. [28], Raza and Malik [29] have obtained the bounds
on the third Hankel determinant H3,1(f) for certain families of analytic functions,
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which is defined by

H3,1(f) =
a1 a2 a3

a2 a3 a4

a3 a4 a5

= a3(a2a4 − a2
3)− a4(a4 − a2a3) + a5(a3 − a2

2). (1.5)

In the present paper, we investigate the bounds on H3,1(f) for the functions
belonging to the classesM and N defined above. In order to get the main results, we
need the following known results.

Lemma 1.1. ([16]) If p ∈ P be of the form p(z) = 1 +

∞∑
n=1

cnz
n, then

2c2 = c21 + x(4− c21),

and

4c3 = c31 + 2c1x(4− c21)− c1x2(4− c21) + 2(4− c21)(1− |x|2)z,

for some x, z with |x| ≤ 1 and |z| ≤ 1.

Lemma 1.2. ([22, Theorem 1]) If f ∈ N be given by (1.1), then

|an| ≤
1

n(n− 1)
, n ≥ 2.

The result is sharp for the function fn such that f ′n(z) = (1− zn−1)1/(n−1), n ≥ 2.

As it is known that, if f(z) ∈ N then zf ′(z) ∈ M, therefore from Lemma 1.2,
we conclude that

Lemma 1.3. If f(z) ∈M be given by (1.1), then

|an| ≤
1

n− 1
, n ≥ 2.

The result is sharp for the function gn(z) = z(1− zn−1)1/(n−1), n ≥ 2.

Lemma 1.4. ([22, Corollary 2]) If f ∈ N be given by (1.1), then

|a3 − a2
2| ≤ 1/4.

Equality is attained for the function f such that f ′(z) = (1− z2eiθ)1/2, θ ∈ [0, 2π].

2. Main results

Our first main result is contained in the following theorem:

Theorem 2.1. Let the function f ∈M be given by (1.1), then

|a3 − a2
2| ≤ 1. (2.1)

The result (2.1) is sharp and equality in (2.1) is attained for the function

e1(z) = z − z2.
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Proof. If the function f ∈M be given by (1.1), then we may write

zf ′(z)

f(z)
=

3

2
− 1

2
p(z), (2.2)

where p(z) = 1 +

∞∑
n=1

cnz
n is analytic in D and <(p(z)) > 0 in D. Also, we have

|cn| ≤ 2 for all n ≥ 1 (see [7]). In terms of power series expansion, the last identity is
equivalent to

∞∑
n=1

nanz
n =

(
1− 1

2

∞∑
n=1

cnz
n

)( ∞∑
n=1

anz
n

)
,

where a1 = 1. Equating the coefficients of zn on both sides, we deduce that

a2 = −1

2
c1, a3 =

1

8
(c21 − 2c2), a4 =

1

48
(6c1c2 − 8c3 − c31). (2.3)

Now using Lemma 1.1 for some x such that |x| ≤ 1, we have

|a3 − a2
2| =

∣∣∣∣18(c21 − 2c2)− 1

4
c21

∣∣∣∣ =
1

8
|2c21 + x(4− c21)|.

As |c1| ≤ 2, taking c1 = c, assume without restriction that c ∈ [0, 2]. Hence applying
the triangle inequality with µ = |x|, we obtain

|a3 − a2
2| ≤

1

8
[2c2 + µ(4− c2)]

= F1(c, µ).

Let Ω = {(c, µ) : 0 ≤ c ≤ 2 and 0 ≤ µ ≤ 1}. Differentiating F1 with respect to µ, we
get

∂F1

∂µ
=

1

8
(4− c2) ≥ 0 for 0 ≤ µ ≤ 1.

Therefore F1(c, µ) is a non-decreasing function of µ on the closed interval [0, 1]. Thus,
it attains maximum value at µ = 1. Let

max
0≤µ≤1

F1(c, µ) = F1(c, 1) =
c2 + 4

8
= G1(c).

We observe that G1(c) is an increasing function in [0, 2], so it will attains maximum
value at c = 2. Next, to find the critical point on the boundary of Ω, we examine
all the four line segments of Ω. Along the line segment c = 2 with 0 ≤ µ ≤ 1,
we have F1(c, µ) = F1(2, µ) = 1, which is a constant, thus every point on the line
segment is the critical point. For the line segment c = 0 with 0 ≤ µ ≤ 1, we have
F1(c, µ) = F1(0, µ) = µ/2. For the line segment µ = 0 with 0 ≤ c ≤ 2, we have
F1(c, µ) = F1(c, 0) = c2/4, which gives the critical point (0, 0) and F1(0, 0) = 0. Also,
for the line segment µ = 1 with 0 ≤ c ≤ 2, we have F1(c, µ) = F1(c, 1) = (c2 + 4)/8,
which gives another critical point (0, 1) and F1(0, 1) = 1/2.

Putting this all together we can conclude that the maximum of F1(c, µ) lie at
each point along the line segment c = 2 with 0 ≤ µ ≤ 1, which can also be verified
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through the mathematica plot of F1(c, µ) over the region Ω given below in the Figure 1.
Hence

max
Ω

F1(c, µ) = F1(2, µ) = 1.

Figure 1. Mapping of F1(c, µ) over Ω

To find the extremal function, setting c1 = 2 and x = 1 in Lemma 1.1, we find
that c2 = c3 = 2, using these values in (2.3), we get that a2 = −1 and a3 = a4 = 0,
therefore the extremal function would be e1(z) = z − z2. A simple calculation shows
that e1(z) ∈M. This complete the proof of Theorem 2.1. �

Theorem 2.2. Let the function f ∈M be given by (1.1), then

|a2a4 − a2
3| ≤

1

4
. (2.4)

The result (2.4) is sharp and equality is attained for the function

e2(z) = z − 1

2
z3 and e3(z) = z(1− z2)1/2.

Proof. Using (2.3) and applying Lemma 1.1 for some x and z such that |x| ≤ 1 and
|z| ≤ 1, we have

|a2a4 − a2
3| =

∣∣∣∣− 1

96
c1(6c1c2 − 8c3 − c31)− 1

64

(
c21 − 2c2

)2∣∣∣∣
=

1

192

∣∣−3x2(4− c21)2 + 2c21x(4− c21)− 4c21x
2(4− c21)

+8c1(4− c21)(1− |x|2)z
∣∣ .
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As |c1| ≤ 2, taking c1 = c, assume without restriction that c ∈ [0, 2]. Thus applying
the triangle inequality with µ = |x|, we obtain

|a2a4 − a2
3| ≤

1

192

[
(4− c2){3µ2(4− c2) + 2c2µ+ 4µ2c2 + 8c(1− µ2)}

]
=

1

192

[
(4− c2){(12− 8c+ c2)µ2 + 2c2µ+ 8c}

]
= F2(c, µ).

Differentiating F2(c, µ) in the above equation with respect to µ, we get

∂F2

∂µ
=

(4− c2)

96

{
(12− 8c+ c2)µ+ c2

}
≥ 0 for 0 ≤ µ ≤ 1.

Therefore F2(c, µ) is a non-decreasing function of µ on closed interval [0, 1]. Thus, it
attains maximum value at µ = 1. Let

max
0≤µ≤1

F2(c, µ) = F2(c, 1) =
16− c4

64
= G2(c).

We observe that G2(c) is a decreasing function in [0, 2], so it will attains maximum
value at c = 0. Next, to find the critical point on the boundary of Ω, we examine all the
four line segments of Ω by the earlier method used in Theorem 2.1, and we are getting
(0, 0), (2/

√
3, 0) and (0, 1) are the critical points and F2(0, 0) = 0, F2(2/

√
3, 0) =

2/9
√

3 and F2(0, 1) = 1/4. Therefore maximum value of F2(c, µ) is obtained by
putting c = 0 and µ = 1, which can also verified through the mathematica plot of
F2(c, µ) over Ω given below in Figure 2. Hence

max
Ω

F2(c, µ) = F2(0, 1) =
1

4
.

Figure 2. Mapping of F2(c, µ) over Ω
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Now, to find extremal function, set c1 = 0 and selecting x = 1 in Lemma 1.1, we
find that c2 = 2 and c3 = 0. Using these values in (2.3), we get a2 = a4 = 0 and a3 =
1/2, therefore one of the extremal function of (2.4) would be e2(z) = z− 1

2z
3. We can

also see that equality in (2.4) is attended for the function e3(z) = z(1− z2)1/2 ∈ M.
A simple calculation shows that e2 ∈ M and e3 ∈ M. This complete the proof of
Theorem 2.2. �

Theorem 2.3. Let the function f ∈M be given by (1.1), then

|a2a3 − a4| ≤
2
√

3

9
. (2.5)

Proof. Using (2.3) and applying Lemma 1.1 for some x and z such that |x| ≤ 1 and
|z| ≤ 1, we have

|a2a3 − a4| =

∣∣∣∣ 1

16
c1(c21 − 2c2) +

1

48
(6c1c2 − 8c3 − c31)

∣∣∣∣
=

1

24

∣∣2c1x(4− c21)− c1x2(4− c21) + 2(4− c21)(1− |x|2)z
∣∣ .

As |c1| ≤ 2, letting c1 = c, assume without restriction that c ∈ [0, 2]. Hence applying
the triangle inequality with µ = |x|, we obtain

|a2a3 − a4| ≤
(4− c2)

24
[2 + 2cµ+ (c− 2)µ2]

= F3(c, µ).

To find the maximum of F3 over the region Ω, differentiating F3 with respect to µ
and c, we get

∂F3

∂µ
=

(4− c2)

12
[c+ (c− 2)µ] (2.6)

∂F3

∂c
=

1

24

[
−4c+ (8− 6c2)µ+

(
4 + 4c− 3c2

)
µ2
]
. (2.7)

A critical point of F3(c, µ) must satisfy
∂F3

∂µ
= 0 and

∂F3

∂c
= 0. The condition

∂F3

∂µ
= 0

gives c = ±2 or µ = −c/(c−2). The interior point (c, µ) of Ω satisfying such condition
in only (0, 0), and at that point (0, 0), we have(

∂2F3

∂µ2

)(
∂2F3

∂c2

)
−
(
∂2F3

∂c ∂µ

)2

= 0.

Hence, it is not certain that at (0, 0) function have maximum value in Ω. Since Ω
is closed and bounded and F3 is continuous, the maximum of F3 shall be attained
on the boundary of Ω. Along the line segment c = 2 with 0 ≤ µ ≤ 1, we have
F3(c, µ) = F3(2, µ) = 0, which is a constant. For the line segment c = 0 with 0 ≤
µ ≤ 1, we have F3(c, µ) = F3(0, µ) = (1 − µ2)/3, which gives the same critical point
(0, 0) and F3(0, 0) = 1/3. For the line segment µ = 0 with 0 ≤ c ≤ 2, we have
F3(c, µ) = F3(c, 0) = (4− c2)/12, which gives the same critical point (0, 0). Also, for
the line segment µ = 1 with 0 ≤ c ≤ 2, we have F3(c, µ) = F3(c, 1) = (4c − c3)/8,
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which gives another critical point (2/
√

3, 1) on this line and F3(2/
√

3, 1) = 2
√

3/9.

Therefore, the point (0, 0) and (2/
√

3, 1) are the only critical points of F3 over Ω.

Hence, the largest value of F3(c, µ) over the region Ω lies at (2/
√

3, 1) and

max
Ω

F3(c, µ) = F3(2/
√

3, 1) =
2
√

3

9
. �

Figure 3. Mapping of F3(c, µ) over Ω

Theorem 2.4. Let the function f ∈M be given by (1.1), then

|H3,1(f)| ≤ 81 + 16
√

3

216
.

Proof. Using Lemma 1.3, Theorem 2.1, Theorem 2.2, Theorem 2.3 and the triangle
inequality on H3,1(f), we get

|H3,1(f)| ≤ |a3||a2a4 − a2
3|+ |a4||a2a3 − a4|+ |a5||a3 − a2

2|

≤ 1

2
· 1

4
+

1

3
· 2
√

3

9
+

1

4
· 1 =

81 + 16
√

3

216
.

This completes the proof of Theorem 2.4. �

Theorem 2.5. Let the function f ∈ N be given by (1.1), then

|a2a3 − a4| ≤
1

12
. (2.8)

The result (2.8) is sharp and equality in (2.8) is attained for the function e4 where
e′4(z) = (1− z3)1/3.
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Proof. Let the function f ∈ N be given by (1.1), then by definitions it is clear that
f(z) ∈ N if and only if zf ′(z) ∈M, thus replacing an by nan in (2.3), we get

a2 = −1

4
c1, a3 =

1

24
(c21 − 2c2), a4 =

1

192
(6c1c2 − 8c3 − c31). (2.9)

Now using (2.9) and applying Lemma 1.1 for some x and z such that |x| ≤ 1 and
|z| ≤ 1, we have

|a2a3 − a4| =

∣∣∣∣− 1

96
c1(c21 − 2c2)− 1

192
(6c1c2 − 8c3 − c31)

∣∣∣∣
=

1

192

∣∣3c1x(4− c21)− 2c1x
2(4− c21) + 4(4− c21)(1− |x|2)z

∣∣ .
As |c1| ≤ 2, taking c1 = c, assume without restriction that c ∈ [0, 2]. Hence applying
the triangle inequality with µ = |x|, we obtain

|a2a3 − a4| ≤
(4− c2)

192
[4 + 3cµ+ 2(c− 2)µ2]

= F4(c, µ).

Following the earlier method used in Theorem 2.3, we can show that the global max-
imum of F4(c, µ) over the region Ω is achieved at (0, 0) and F4(0, 0) = 1/12. This
can also be verified through the mathematica plot of F4(c, µ) over Ω given below in
Figure 4.

Figure 4. Mapping of F4(c, µ) over Ω

Also observe that equality in (2.8) is attained for the function e4 where

e′4(z) = (1− z3)1/3.

A computation shows that e4 ∈ N . Hence the result is obtained. �
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Theorem 2.6. Let the function f ∈ N be given by (1.1), then

|a2a4 − a2
3| ≤

9

320
. (2.10)

Proof. Using (2.9) and applying Lemma 1.1 for some x and z such that |x| ≤ 1 and
|z| ≤ 1, we have

|a2a4 − a2
3| =

1

192

∣∣∣∣−1

4
c1(6c1c2 − 8c3 − c31)− 1

3

(
c21 − 2c2

)2∣∣∣∣
=

1

192

∣∣∣∣ 1

12
c41 +

1

6
c21c2 +

4

3
c22 − 2c1c3

∣∣∣∣
=

1

2304

∣∣3xc21(4− c21)− 6x2c21(4− c21) + 12zc1(4− c21)(1− |x|2)

−4(4− c21)2x2
∣∣ .

As |c1| ≤ 2, taking c1 = c, assume without restriction that c ∈ [0, 2]. Thus applying
the triangle inequality with µ = |x|, we obtain

|a2a4 − a2
3| ≤

(4− c2)

2304

{
12c+ 3c2µ+ 2(8− 6c+ c2)µ2

}
= F5(c, µ).

Differentiating F5(c, µ) with respect to µ, we get

∂F5

∂µ
=

(4− c2)

2304

{
4µ(c2 − 6c+ 8) + 3c2

}
≥ 0 for 0 ≤ µ ≤ 1.

Therefore F5(c, µ) is a non-decreasing function of µ on closed interval [0, 1]. Thus, it
attains maximum value at µ = 1. Let

max
0≤µ≤1

F5(c, µ) = F5(c, 1) =
1

2304
(64 + 4c2 − 5c4) = G5(c).

We can see that G5(c) is an increasing function in [0,
√

2/5], so G5(c) attains maxi-

mum value at c =
√

2/5. Next, to find the critical points on the boundary of Ω, we
examine all the four line segments of Ω by the earlier method used in Theorem 2.1
and 2.3, and we get (0, 0), (2/

√
3, 0) and (0, 1) are the critical points and F5(0, 0) = 0,

F5(2/
√

3, 0) = 1/36
√

3 and F5(0, 1) = 1/36. Therefore F5(c, µ) have maximum value

at µ = 1 and c =
√

2/5 in the region Ω. Thus

max
Ω

F5(c, µ) = F5(
√

2/5, 1) =
9

320
.

This completes the proof of Theorem 2.6. �

Remark 2.7. For f ∈ S, Thomas [27, p. 166] conjectured that

|H2,n(f)| = |anan+2 − a2
n+1| ≤ 1, n = 2, 3, 4 · · · .

Subsequently, Li and Srivastava [15, p. 1040] shown that this conjecture is not valid
for n ≥ 4, i.e. conjecture is valid only for n = 2, 3. From Theorem 2.6, we found that,
if function f is member of class N and having form (1.1), then |H2,2(f)| ≤ 9/320.
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Figure 5. Mapping of F5(c, µ) over Ω

Since all functions in N are univalent in D. Therefore, Theorem 2.6 validates the
Thomas conjecture when n = 2 for the function belonging to the classes N .

Theorem 2.8. Let the function f ∈ N be given by (1.1), then

|H3,1(f)| ≤ 139

5760
.

Proof. Using Lemma 1.2, Lemma 1.4, Theorem 2.5, Theorem 2.6 and the triangle
inequality on H3,1(f), we get

|H3,1(f)| ≤ |a3||a2a4 − a2
3|+ |a4||a2a3 − a4|+ |a5||a3 − a2

2|

≤ 1

6

9

320
+

1

12

1

12
+

1

20

1

4
=

139

5760
.

This completes the proof of Theorem 2.8. �
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Schwarzian derivative and Janowski convexity

Nisha Bohra and V. Ravichandran

Abstract. Sufficient conditions relating the Schwarzian derivative to the Janowski
convexity of a normalized analytic function f are obtained. As a consequence,
sufficient conditions are determined for the function f to be Janowski convex
and convex of order α. Also, some equivalent sharp inequalities are proved for f
to be Janowski convex.
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1. Introduction and main results

Let A be the class of analytic functions f in the open unit disk

D = {z ∈ C : |z| < 1}

and normalized by the conditions f(0) = 0 and f ′(0) = 1. Let S be the class of
univalent functions in A. An analytic function f is subordinate to an analytic function
g, written as f(z) ≺ g(z), provided there is an analytic function w defined on D with
w(0) = 0 and |w(z)| < 1 satisfying f(z) = g(w(z)). For −1 ≤ B < A ≤ 1, let P[A,B]
be the class consisting of normalized analytic functions p(z) = 1 + c1z + · · · in D
satisfying

p(z) ≺ 1 +Az

1 +Bz
.

The class K[A,B] of Janowski convex functions [2] consists of functions f ∈ A satis-
fying

1 +
zf ′′(z)

f ′(z)
∈ P[A,B].

For 0 ≤ α < 1, K[1− 2α,−1] ≡ K(α) is the usual class of convex functions of order
α. For f ∈ S, the Schwarzian derivative of f is defined as

Sf (z) =

(
f ′′(z)

f ′(z)

)′

− 1

2

(
f ′′(z)

f ′(z)

)2

.



198 Nisha Bohra and V. Ravichandran

The Schwarzian derivative has the property that it is invariant with respect to Möbius
transformations, that is, S(Mof, z) ≡ S(f, z) for any Mobius transformation M(z),
and S(M, z) ≡ 0 if and only if M(z) is a Möbius transformation. There are several
sufficient conditions relating the Schwarzian derivative to the univalency of f (see
[5] and [6]). Miller and Mocanu in [3] determined sufficient conditions relating the
Schwarzian derivative to the convexity of f . In this paper, we find the sufficient
conditions for Janowski convexity of f . Also, Harmelin in [1] derived sharp bounds
for |(1− |z|)2f ′′(z)/f ′(z)− 2z| and for (1− |z|2)2|Sf (z)|, obtaining the refinement of
Nehari’s result [7] for convex functions of order α. Here, we further extend this result
for the class K[A,B] of Janowski convex functions. Our first result gives a general
condition for a function to be Janowski convex.

Theorem 1.1. Let Φ : C2 → C satisfy Re Φ

(
(1 +A)ρi+ (1−A)

(1 +B)ρi+ (1−B)
, τ + iη

)
≤ 0 when

ρ, τ , η ∈ R and

2τ(ρ2(1 +B)2 + (1−B)2)2 + (A2 −B2)(ρ2(1 +B)− (1−B))2

− 4ρ2(A2 −B2) ≤ 0. (1.1)

Let f ∈ A with f ′(z) 6= 0 and (A−B)f ′(z)− (1 +B)zf ′′(z) 6= 0. If

Re Φ

(
1 +

zf ′′(z)

f ′(z)
, z2Sf (z)

)
> 0, (1.2)

where z ∈ D, then f ∈ K[A,B].

Remark 1.2. For A = 1 and B = −1, Theorem 1.1 reduces to [4, Theorem 4.6 b.].

Remark 1.3. The following functions satisfies the condition (1.1) of Theorem 1.1.

(1) Φ1(u, v) = (A+B)(u− 1)2 + 2(A−B)v,
(2) Φ2(u, v) = 2(A−B)v − (A+B)(Imu)2.

Thus, we have the following.

Corollary 1.4. Let f ∈ A with f ′(z) 6= 0 and (A−B)f ′(z)− (1 +B)zf ′′(z) 6= 0. Then
each of the following is a sufficient condition for f to be in K[A,B].

(1) Re

(
(A+B)

(
zf ′′(z)

f ′(z)

)2

+ 2(A−B)z2Sf (z)

)
> 0,

(2) Re

(
2(A−B)z2Sf (z)− (A+B)

(
Im

(
1 +

zf ′′(z)

f ′(z)

))2)
> 0.

For A = 1 − 2α , B = −1, Theorem 1.1 gives the following sufficient condition for a
function f ∈ A to be convex of order α.

Corollary 1.5. Let Φ : C2 → C satisfy Re Φ((1 − α)ρi + α, τ + iη) ≤ 0 when ρ, τ ,
η ∈ R, 0 ≤ α < 1 and

2τ − α(1− α)(1− ρ2) ≤ 0. (1.3)

Let f ∈ A with f ′(z) 6= 0. If

Re Φ

(
1 +

zf ′′(z)

f ′(z)
, z2Sf (z)

)
> 0, where z ∈ D,
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then f ∈ K(α).

Remark 1.6. The following functions satisfies the condition (1.3) of Corollary 1.5.

(1) Φ1(u, v) = 2v − α,
(2) Φ2(u, v) = 2v + u2 − α,
(3) Φ3(u, v) = 2v(1− α)− α(u− 1)2.

Corollary 1.7. Let f ∈ A with f ′(z) 6= 0. Then each of the following is a sufficient
condition for f to be in K(α).

(1) Re

(
2z2Sf (z)− α

)
> 0,

(2) Re

(
2z2Sf (z) +

(
1 +

zf ′′(z)

f ′(z)

)2

− α
)
> 0,

(3) Re

(
2(1− α)z2Sf (z)− α

(
zf ′′(z)

f ′(z)

)2)
> 0.

The next theorem gives necessary and sufficient conditions for a function f ∈ A to be
Janowski convex.

Theorem 1.8. Let f ∈ A. The following statements are equivalent:

(1) f ∈ K[A,B].

(2)

∣∣∣∣2Bz +
2(1−B2r2)− (1− r2)|A+B|

A−B
f ′′(z)

f ′(z)

∣∣∣∣2 ≤ 2(2− (1− r2)|A+B|).

(3)

∣∣∣∣1 +
zf ′′(z)

f ′(z)
− 1−ABr2

1−B2r2

∣∣∣∣ ≤ (A−B)r

1−B2r2
.

(4)
2(1−B2r2)(1− r2)− (1− r2)2|A+B|

A−B
|Sf (z)|

+
1

2

∣∣∣∣2Bz +
2(1−B2r2)− (1− r2)|A+B|

A−B
f ′′(z)

f ′(z)

∣∣∣∣2 ≤ 2− (1− r2)|A+B|,

where |z| = r < 1.

Moreover, the inequalities (3) and (4) are sharp.

Inequalities (3) and (4) gives the following coefficient bounds.

Corollary 1.9. Let f(z) = z +
∑∞

n=2 anz
n ∈ K[A,B]. Then

|a2| ≤
A−B

2
, |a3| ≤

1

6
(A−B)(A−B + 1).

Moreover, the bounds are sharp.

2. Proofs of main theorems

We will use the following lemma.

Lemma 2.1. [4] Let Ω ⊂ C and Ψ : C2×D→ C satisfy Ψ(iρ, σ; z) /∈ Ω whenever z ∈ D,
ρ real and σ ≤ −(1+ρ2)/2. If p is analytic in D with p(0) = 1, and Ψ(p(z), zp′(z); z) ∈
Ω for z ∈ D, then Re p(z) > 0 in D.
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Proof of Theorem 1.1. Let p : D→ C be defined as

p(z) =
(A−B)f ′(z) + (1−B)zf ′′(z)

(A−B)f ′(z)− (1 +B)zf ′′(z)
. (2.1)

Then p is analytic and p(0) = 1. Also, a calculation using equation (2.1) shows that

1 +
zf ′′(z)

f ′(z)
=

(1 +A)p(z) + (1−A)

(1 +B)p(z) + (1−B)

and

z2Sf (z) =
(A−B)(4zp′(z)− (A+B + 2)p2(z) + 2(A+B)p(z) + 2−B −A)

2((1 +B)p(z) + (1−B))2
.

We define a transformation from C2 → C2 as

u =
(1 +A)r + (1−A)

(1 +B)r + (1−B)

v =
(A−B)(4s− (A+B + 2)r2 + 2(A+B)r + 2−B −A)

2((1 +B)r + (1−B))2
.

Let Ψ(r, s) = Φ(u, v)

= Φ

(
(1 +A)r + (1−A)

(1 +B)r + (1−B)
,

(A−B)(4s− (A+B + 2)r2 + 2(A+B)r + 2−B −A)

2((1 +B)r + (1−B))2

)
.

Then

Ψ(p(z), zp′(z)) = Φ

(
1 +

zf ′′(z)

f ′(z)
, z2Sf (z)

)
.

Hence, according to (1.2), we have Re Ψ(p(z), zp′(z)) > 0. We will use Lemma 2.1 to
prove that Re p(z) > 0.
Taking r = iρ and s = σ, we obtain

u =
(1 +A)ρi+ (1−A)

(1 +B)ρi+ (1−B)

v =
(A−B)(4σ + (A+B + 2)ρ2 + 2(A+B)ρi+ 2−B −A)

2((1 +B)ρi+ (1−B))2
.

The condition σ ≤ −(1 + ρ2)/2 is equivalent to

2τ((1−B)2 + ρ2(1 +B)2)2 − 4ρ2(1−B2)(A2 −B2)

(A−B)((1−B)2 − ρ2(1 +B)2)
+ (A+B)(1− ρ2) ≤ 0,

where τ is real part of v. On simplification, we have

ρ4(2τ(1 +B)4 + (A2 −B2)(1 +B)2) + ρ2(4τ(1−B2)2 − 2(A2 −B2)(3−B2))

+2τ(1−B)4 + (A2 −B2)(1−B)2 ≤ 0,

which is equivalent to

2τ(ρ2(1 +B)2 + (1−B)2)2 + (A2 −B2)(ρ2(1 +B)− (1−B))2 − 4ρ2(A2 −B2) ≤ 0.
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Hence Re Φ

(
(1 +A)ρi+ (1−A)

(1 +B)ρi+ (1−B)
, τ + iη

)
= Re Φ(u, v) ≤ 0 using (1.1). This gives

Re Ψ(ρi, σ) ≤ 0 whenever σ ≤ −(1 + ρ2)/2 .
From Lemma 2.1, we get Re p(z) > 0 or equivalently

(A−B)f ′ + (1−B)zf ′′

(A−B)f ′ − (1 +B)zf ′′
≺ 1 + z

1− z
.

By definition of subordination, there exists an analytic map w : D→ D with w(0) = 0
and

(A−B)f ′ + (1−B)zf ′′

(A−B)f ′ − (1 +B)zf ′′
=

1 + w(z)

1− w(z)
.

A simple computation gives

1 +
zf ′′(z)

f ′(z)
=

1 +Aw(z)

1 +Bw(z)
,

and hence

1 +
zf ′′(z)

f ′(z)
≺ 1 +Az

1 +Bz
, or f ∈ K[A,B]. �

Proof of Theorem 1.8. Clearly (1)⇔ (3). We show that (1)⇒ (4)⇒ (2)⇒ (1).
Let f ∈ K[A,B]. Then there exists an analytic function w : D→ D with |w(z)| ≤ |z|
such that

1 +
zf ′′(z)

f ′(z)
=

1 +Aw(z)

1 +Bw(z)
.

This gives

f ′′(z)

f ′(z)
=

(A−B)φ(z)

1 +Bzφ(z)
or φ(z) =

f ′′(z)/f ′(z)

(A−B)−Bzf ′′(z)/f ′(z)
,

where φ(z) = w(z)/z is analytic and satisfies |φ(z)| ≤ 1 in D. A simple computation
gives

φ′(z) =

2(A−B)Sf (z) +

(
f ′′(z)

f ′(z)

)2

(A+B)

2((A−B)−Bzf ′′(z)/f ′(z))2
.

But |φ′(z)| ≤ (1− |φ(z)|2)/(1− |z|2) by the invariant form of Schwarz lemma, so we
get

(1− |z|2)

2

∣∣∣∣2(A−B)Sf (z) +

(
f ′′(z)

f ′(z)

)2

(A+B)

∣∣∣∣
|(A−B)−Bzf ′′(z)/f ′(z)|2

≤ 1−
∣∣∣∣ f ′′(z)/f ′(z)

(A−B)−Bzf ′′(z)/f ′(z)

∣∣∣∣2.
This gives

(1− |z|2)(A−B)|Sf (z)| − (1− |z|2)

2

∣∣∣∣(f ′′(z)f ′(z)

)2

(A+B)

∣∣∣∣
≤ (A−B)2 − (1−B2|z|2)

∣∣∣∣f ′′(z)f ′(z)

∣∣∣∣2 − 2B(A−B) Re
zf ′′(z)

f ′(z)
.
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After simplification, we have the desired inequality given by (4).
Clearly (4)⇒ (2). We show that (2)⇒ (1). Opening the square in (2) yields(

(1−B2r2)− (1− r2)

2
|A+B|

)∣∣∣∣f ′′(z)f ′(z)

∣∣∣∣2 + 2B(A−B) Re
zf ′′(z)

f ′(z)
≤ (A−B)2. (2.2)

Adding and subtracting (1−B2)r2
∣∣∣∣f ′′(z)f ′(z)

∣∣∣∣2 in the left hand side of (2.2), we get

(1−B2)r2
∣∣∣∣f ′′(z)f ′(z)

∣∣∣∣2+
(1− r2)

2
(2−|A+B|)

∣∣∣∣f ′′(z)f ′(z)

∣∣∣∣2+2B(A−B) Re
zf ′′(z)

f ′(z)
≤ (A−B)2.

Since
(1− r2)

2
(2− |A+B|)

∣∣∣∣f ′′(z)f ′(z)

∣∣∣∣2 ≥ 0 for all z ∈ D, we get

(1−B2)r2
∣∣∣∣f ′′(z)f ′(z)

∣∣∣∣2 + 2B(A−B) Re
zf ′′(z)

f ′(z)
≤ (A−B)2. (2.3)

Now, if B 6= −1, the above equation gives

r2
∣∣∣∣f ′′(z)f ′(z)

∣∣∣∣2 +
2B(A−B)

1−B2
Re

zf ′′(z)

f ′(z)
≤ (A−B)2

1−B2
.

Upon simplification, we have∣∣∣∣1 +
zf ′′(z)

f ′(z)
− 1−AB

1−B2

∣∣∣∣ ≤ A−B
1−B2

,

which means f ∈ K[A,B]. For B = −1, inequality (2.3) reduces to

−2(A+ 1) Re
zf ′′(z)

f ′(z)
≤ (A+ 1)2.

This gives

1 + Re
zf ′′(z)

f ′(z)
≥ 1−A

2
,

which means f ∈ K[A,−1].

To verify the sharpness for inequality (3), let 1 +
zf ′′(z)

f ′(z)
=

1 +Az

1 +Bz
. We show

that

∣∣∣∣1 +Az

1 +Bz
− 1−ABr2

1−B2r2

∣∣∣∣ =
(A−B)r

1−B2r2
. Let w =

1 +Az

1 +Bz
. Then

|w|2 − 2 Rew(1−ABr2)

1−B2r2
=
A2r2 − 1

1−B2r2
.

Adding

(
1−ABr2

1−B2r2

)2

both sides, we have the desired equality.

To verify the sharpness of inequality (4), we substitute

f ′′(z)

f ′(z)
=

A−B
1 +Bz

and Sf (z) =
−(A2 −B2)

2(1 +Bz)2
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in the left hand side of inequality (4). We show that

2(1−B2r2)(1− r2)− (1− r2)2|A+B|
|1 +Bz|2

|A+B|

+

∣∣∣∣2Bz +
2(1−B2r2)− (1− r2)|A+B|

1 +Bz

∣∣∣∣2 − 4 + 2(1− r2)|A+B| = 0. (2.4)

Simplifying the left hand side of equation (2.4), we get

4(1−B2r2)2 − 2(1−B2r2)(1− r2)|A+B|
|1 +Bz|2

− 4(1−B2r2) + 2(1− r2)|A+B|

+ 4B(2(1−B2r2)− (1− r2)|A+B|) Re

(
z

1 +Bz

)
,

= (2(1−B2r2)− (1− r2)|A+B|)
(

2(1−B2r2)

|1 +Bz|2
− 2

)
+ 4B(2(1−B2r2)

− (1− r2)|A+B|) Re

(
z

1 +Bz

)
,

= (2(1−B2r2)− (1− r2)|A+B|)
(
−4B(Re z +Br2)

|1 +Bz|2

)
+ 4B(2(1−B2r2)

− (1− r2)|A+B|) Re

(
z

1 +Bz

)
,

= − 4B(2(1−B2r2)− (1− r2)|A+B|) Re

(
z

1 +Bz

)
+ 4B(2(1−B2r2)

− (1− r2)|A+B|) Re

(
z

1 +Bz

)
,

= 0.

This completes the proof. �
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Abstract. In the present paper, by considering suitable classes of admissible func-
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1. Introduction and motivations

Denote by H(U), the class of functions which are analytic in the open unit disk

U := {z ∈ C : |z| < 1}.

For a ∈ C, n ∈ N := {1, 2, 3, · · · }, let

H[a, n] = {f ∈ H(U) : f(z) = a+ anz
n + an+1z

n+1 + · · · },

with H0 ≡ H[0, 1] and H ≡ H[1, 1].
Let A denote the class of all normalized analytic functions in U of the form:

f(z) = z +

∞∑
n=1

an+1z
n+1 (z ∈ U). (1.1)

For f, g ∈ A, where f given by (1.1) and g is defined by

g(z) = z +

∞∑
n=1

bn+1z
n+1 (z ∈ U),



206 Trailokya Panigrahi and Daniel Breaz

the Hadamard product (or convolution) of f and g, denoted by f ∗ g is defined as

(f ∗ g)(z) = z +

∞∑
n=1

an+1bn+1z
n+1 = (g ∗ f)(z).

Let f, F ∈ H(U). The function f is said to be subordinate to F , or equivalently F
is said to be superordinate to f , if there exists a function ω(z) analytic in U, with
ω(0) = 0 and |ω(z)| < 1 such that f(z) = F (w(z)) (z ∈ U). In such a case, we
write f(z) ≺ F (z) (z ∈ U). Furthermore, if the function F is univalent in U, then
f(z) ≺ F (z)⇐⇒ f(0) = F (0) and f(U) ⊂ F (U) (see [4]).
Now we consider the following second-order linear non-homogeneous differential equa-
tion [14, page 341]):

z2w′′(z) + zw′(z) + (z2 − p2)w(z) =
4
(
z
2

)p+1

√
πΓ(p+ 1

2 )
, (1.2)

where z ∈ C and Γ stands for the Euler’s gamma function. The solution of the
homogeneous part is the Bessel’s function of order p, where p is a real or complex
number. The particular integral of (1.2) is called the Struve function of order p, given
by

Hp(z) =

∞∑
n=0

(−1)n

Γ(n+ 3
2 )Γ(p+ n+ 3

2 )

(z
2

)2n+p+1

(z ∈ C). (1.3)

The differential equation

z2w′′(z) + zw′(z)− (z2 + p2)w(z) =
4
(
z
2

)p+1

√
πΓ(p+ 1

2 )
, (1.4)

differs from (1.2) only in the coefficient of w. The particular integral of (1.4) is called
the modified Struve function of order p and is given by [14, page 353]:

Lp(z) =− ie−
ipπ
2 Hp(iz)

=

∞∑
n=0

(
z
2

)2n+p+1

Γ(n+ 3
2 )Γ(p+ n+ 3

2 )
(z ∈ C). (1.5)

Further, let us consider the second-order linear non-homogeneous differential equation
of the form (see [6]):

z2w′′(z) + bzw′(z) + [cz2 − p2 + (1− b)p]w(z) =
4
(
z
2

)p+1√
(π)Γ(p+ b

2 )
(b, c, p ∈ C). (1.6)

Taking b = c = 1 and b = 1, c = −1 in equation (1.6), we get (1.2) and (1.4)
respectively. Thus, (1.6) is the generalizes (1.2) and (1.4). This permits us to study
the Struve and modified Struve function together. The function wp,b,c(z), called the
generalized Sturve function of order p is defined to be the particular integral of (1.6).
Moreover, the function wb,p,c(z) has the following familiar representation:

wp,b,c(z) :=

∞∑
n=0

(−c)n

Γ(n+ 3
2 )Γ(p+ n+ (b+2)

2 )

(z
2

)2n+p+1

(z ∈ C). (1.7)
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Note that, the series (1.7) is convergent everywhere but generally not univalent in the
open unit disk U.
Recently, Raza and Yağmur [12] (see also, [13]) considered the function ϕp,b,c(z) de-
fined in terms of the generalized Struve function wp,b,c(z) by the transformation

ϕp,b,c(z) = 2p
√

(π)Γ(p+
b+ 2

2
)z
−p+1

2 wp,b,c(
√
z)

= z +

∞∑
n=1

(−c
4

)n(
3
2

)
n

(ν)n
zn+1

(
ν = p+

b+ 2

2
/∈ Z−0 := {0,−1,−2, · · · }, b, p, c ∈ C

)
,

where (λ)n denotes the Pochhammer (or Appell) symbol defined by

(λ)n =
Γ(λ+ n)

Γ(λ)
=

{
1 (n = 0, λ ∈ C \ {0})
λ(λ+ 1) · · · (λ+ n− 1) (n ∈ N, λ ∈ C).

For convenience of notation, we write ϕν,c(z) = ϕp,b,c(z). Now, we introduce a new
operator J cν : A −→ A which is defined by means of Hadamard product as

J cν f(z) = ϕν,c(z) ∗ f(z) = z +

∞∑
n=1

(−c)n

4n
(
3
2

)
n

(ν)n
an+1z

n+1 (z ∈ U). (1.8)

It is easy to verify from (1.8) that

z(J cν+1f(z))′ = νJ cν f(z)− (ν − 1)J cν+1f(z). (1.9)

We need the following definitions and lemmas in order to investigate our main results.

Definition 1.1. (see [7, 8]) Let H(z, ξ) be analytic in U×Ū and let f(z) be analytic and
univalent in U. Then the function H(z, ξ) is said to be strongly subordinate to f(z),
or f(z) is said to be strongly superordinate to H(z, ξ), written as H(z, ξ) ≺≺ f(z),
if for ξ ∈ Ū, H(z, ξ) as the function of z is subordinate to f(z). We note that (see
[1, 2, 11])

H(z, ξ) ≺≺ f(z) (z ∈ U, ξ ∈ Ū)⇐⇒ H(0, ξ) = f(0) and H(U× Ū) ⊂ f(U).

Definition 1.2. (see [4, 11]) Let φ : C3 × U × Ū −→ C and let h(z) be univalent
in U. If p(z) is analytic in U and satisfies the following (second-order) differential
subordination:

φ(p(z), zp′(z), z2p′′(z), z; ξ) ≺≺ h(z) (z ∈ U; ξ ∈ Ū), (1.10)

then p(z) is called a solution of the strong differential subordination. The univalent
function q(z) is called a dominant of the solutions of the strong differential subordi-
nation or more simply a dominant, if p(z) ≺ q(z) (z ∈ U) for all p(z) satisfying (1.10).
A dominant q̃(z) that satisfies q̃(z) ≺ q(z) (z ∈ U) for all dominants q(z) of (1.10) is
said to be the best dominant.

Recently, Oros [9] introduced the following notion of strong differential superor-
dination as the dual concept of strong differential subordination.
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Definition 1.3. (see [5, 9]) Let ϕ : C3 × U × Ū −→ C and let h(z) be analytic in U.
If p(z) and ϕ(p(z)zp′(z), z2p′′(z); z, ξ) are univalent in U for ξ ∈ Ū and satisfy the
following (second-order) strong differential superordination:

h(z) ≺≺ ϕ(p(z), zp′(z), z2p′′(z); z, ξ) (z ∈ U, ξ ∈ Ū), (1.11)

then p(z) is called a solution of the strong differential superordination. An analytic
function q(z) is called a subordinant of the solution of the strong differential super-
ordination or more simply a subordinant if q(z) ≺ p(z) for all p(z) satisfying (1.11).
A univalent subordinant q̃(z) that satisfies q(z) ≺ q̃(z) for all subordinants q(z) of
(1.11) is said to be the best subordinant.

Denote by Q, the class of functions q that are analytic and injective on Ū\E(q),
where

E(q) = {ζ ∈ ∂U : limz−→ζq(z) =∞},
and are such that q′(ζ) 6= 0 for ζ ∈ ∂U\E(q). Further, let the subclass of Q for which
q(0) = a be denoted by Q(a), Q(0) ≡ Q0 and Q(1) ≡ Q1.

Definition 1.4. (see [11]) Let Ω be a set in C, q(z) ∈ Q and n ∈ N. The class of
admissible functions ψn[Ω, q] consists of those functions ψ : C3 × U × Ū −→ C that
satisfy the admissiblility condition ψ(r, s, t; z, ξ) /∈ Ω whenever

r = q(ζ), s = αζq′(ζ) and <
(
t

s
+ 1

)
≥ α<

{
1 +

ζq′′(ζ)

q′(ζ)

}
,

for z ∈ U, ζ ∈ ∂U \E(q), ξ ∈ Ū; α ≥ n. In particular, for n = 1, we write ψ1[Ω, q] as
ψ[Ω, q].

Definition 1.5. (see [9]) Let Ω be a set in C and q ∈ H[a, n] with q′(z) 6= 0. The class
of admissible functions ψ′n[Ω, q] consists of those functions

ψ : C3 × U× Ū −→ C

that satisfy the admissibility condition:

ψ(r, s, t; ζ, ξ) ∈ Ω

whenever

r = q(z), s =
zq′(z)

m
and <

(
t

s
+ 1

)
≤ 1

m
<
{

1 +
zq′′(z)

q′(z)

}
,

for z ∈ U, ξ ∈ Ū, ζ ∈ ∂U and m ≥ n ≥ 1. In particular, for n = 1, we denote ψ′1[Ω, q]
as ψ′[Ω, q].

For the above two classes of admissible functions, the following results have been
proved by earlier authors (see, for details [9, 11]).

Lemma 1.6. (see [11]) Let ψ ∈ ψn[Ω, q] with q(0) = a. If p ∈ H[a, n] satisfies

ψ(p(z), zp′(z), z2p′′(z); z, ξ) ∈ Ω,

then

p(z) ≺ q(z) (z ∈ U).
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Lemma 1.7. (see [9]) Let ψ ∈ ψ′n[Ω, q] with q(0) = a. If the analytic function p(z) ∈
Q(a) and

ψ(p(z), zp′(z), z2p′′(z); z, ξ)

is univalent in U for ξ ∈ Ū, then

Ω ⊂ {ψ(p(z), zp′(z), z2p′′(z); z, ξ) : z ∈ U, ξ ∈ Ū}

implies the following subordination relationship:

q(z) ≺ p(z) (z ∈ U).

Results dealing with the first-order and the second-order strong differential sub-
ordination and strong differential superordination for analytic functions in the open
unit disk are available in literature. In recent years, several authors obtained many
interesting results involving various linear and non-linear operators associated with
strong differential subordination and superordination (see [1, 3, 8, 9, 10, 11, 14]).
By making use of the strong differential subordination and superordination results
of Oros and Oros [9, 11], under certain classes of admissible functions we investigate
some strong differential subordination and strong differential superordination results
of analytic functions associated with the operator J cν defined by (1.8). Further, we
find sufficient conditions for suitable classes of admissible functions so that

q1(z) ≺ J cν+1f(z) ≺ q2(z)

holds true for suitable univalent functions q1 and q2 with q1(0) = q2(z) = 0.

2. Subordination results

We need the following class of admissible functions in order to prove the subor-
dination results associated with the operator J cν defined by (1.8).

Definition 2.1. Let Ω be a set in C, q ∈ Q0 ∩H0, <(ν) > 0 . The class of admissible
functions φJ [Ω, q] consists of those functions φ : C3 × U × Ū −→ C that satisfy the
admissibility condition:

φ(u, v, w; z, ξ) /∈ Ω,

whenever

u = q(ζ), v =
αζq′(ζ) + (ν − 1)q(ζ)

ν
,

and

<
{
ν(ν − 1)w − (ν − 1)(ν − 2)u

νv − (ν − 1)u
+ (3− 2ν)

}
≥ α<

(
1 +

ζq′′(ζ)

q′(ζ)

)
,

(z ∈ U; ζ ∈ ∂U \ E(q), ξ ∈ Ū, α ≥ 1).

Theorem 2.2. Let φ ∈ φJ [Ω, q]. If f ∈ A satisfies{
φ
(
J cν+1f(z),J cν f(z),J cν−1f(z)

)
: z ∈ U, ξ ∈ Ū

}
⊂ Ω, (2.1)

then

J cν+1f(z) ≺ q(z) (z ∈ U).
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Proof. Define the function p(z) by

p(z) = J cν+1f(z) (z ∈ U). (2.2)

Clearly p(z) is analytic in U with p(0) = 0. Differentiating (2.2) with respect to z and
making use of identity (1.9) in the resulting equation, we get

J cν f(z) =
zp′(z) + (ν − 1)p(z)

ν
. (2.3)

Further, a simple calculation shows that

J cν−1f(z) =
z2p′′(z) + 2(ν − 1)zp′(z) + (ν − 1)(ν − 2)p(z)

ν(ν − 1)
(2.4)

Now, define the transformations from C3 to C by

u = r, v =
(ν − 1)r + s

ν
, w =

(ν − 1)(ν − 2)r + 2(ν − 1)s+ t

ν(ν − 1)
. (2.5)

Let

ψ(r, s, t; z, ξ) = φ(u, v, w; z, ξ)

= φ

(
r,

(ν − 1)r + s

ν
,

(ν − 1)(ν − 2)r + 2(ν − 1)s+ t

ν(ν − 1)
; z, ξ

)
. (2.6)

If we use equations (2.2) -(2.4), we find from (2.6) that

ψ(p(z), zp′(z), z2p′′(z); z, ξ) = φ(Jν+1f(z),J cν f(z),J cν−1; z, ξ).

Hence (2.1) becomes

ψ(p(z), zp′(z), z2p′′(z); z, ξ) ∈ Ω.

The proof is completed if it can be shown that the admissibility condition for φ ∈
φJ [Ω, q] in Definition 2.1 is equivalent to the the admissibility condition for ψ as given
in Definition 1.4.
From (2.5), it follows that

t

s
+ 1 =

ν(ν − 1)w − (ν − 1)(ν − 2)u

νv − (ν − 1)u
+ (3− 2ν),

and hence ψ ∈ ψ[Ω, q]. By Lemma 1.6 we have

p(z) ≺ q(z) (z ∈ U),

or, equivalently,

J cν+1f(z) ≺ q(z) (z ∈ U).

Thus, the proof of Theorem 2.2 is completed. �

Corollary 2.3. The conclusion of Theorem 2.2 can be written in the generalized form
as:

{φ(J cν+1f(z),J cν f(z),J cν−1f(z);ω(z), ξ)} ⊂ Ω,

then

J cν+1f(z) ≺ q(z) (z ∈ U),

where ω(z) is any mapping from U onto U.



Admissible classes of analytic functions 211

If Ω 6= C is a simply connected domain and Ω = h(U) for some conformal
mapping h of U onto Ω, then the class φJ [h(U, q)] is written as φJ [h, q].
The following result is an immediate consequence of Theorem 2.2.

Theorem 2.4. Let φ ∈ φJ [h, q]. If f ∈ A satisfies

φ(J cν+1f(z),J cν f(z),J cν−1f(z); z, ξ) ≺≺ h(z) (z ∈ U, ξ ∈ Ū), (2.7)

then
Jν+1f(z) ≺ q(z) (z ∈ U).

The following result is an extension of Theorem 2.2 where the behaviour of q on
∂U is not known.

Corollary 2.5. Let Ω ⊂ C and q be univalent in U with q(0) = 0. Let φ ∈ φJ [Ω, qρ]
for some ρ ∈ (0, 1) where qρ(z) = q(ρz). If f ∈ A satisfies

φ(J cν+1f(z),J cν f(z),J cν−1f(z), z, ξ) ∈ Ω,

the
Jν+1f(z) ≺ q(z) (z ∈ U).

Proof. From Theorem 2.2, it follows that

J cν+1f(z) ≺ qρf(z).

Since qρ(z) ≺ q(z), hence the result follows. �

Theorem 2.6. Let h and q be univalent in U with q(0) = 0. Set qρ(z) = q(ρz) and
hρ(z) = h(ρz). Let φ : C3 × U× Ū −→ C satisfies one of the following conditions:

(i) φ ∈ φJ [h, qρ] for some ρ ∈ (0, 1) or
(ii) there exists ρ0 ∈ (0, 1) such that φ ∈ φJ [hρ, qρ] for all ρ ∈ (ρ0, 1).

If f ∈ A satisfies (2.7), then

J cν+1f(z) ≺ q(z) (z ∈ U).

Proof. Case(i). By applying Theorem 2.2, we obtain p(z) ≺ qρ(z). Since qρ ≺ q, we
have p(z) ≺ q(z).i.e

J cν+1f(z) ≺ q(z) (z ∈ U).

Case(ii). If we let pρ(z) = p(ρz), then

φ(J cν+1f(z),J cν f(z),J cν−1f(z); z, ξ)

= φ
(
pρ(z),

(ν−1)pρ(z)+zp′ρ(z)
ν ,

z2p′′ρ (z)+2(ν−1)zp′ρ(z)+(ν−1)(ν−2)pρ(z)
ν(ν−1) ; z, ξ

)
= φ

(
p(ρz), (ν−1)p(ρz)+zp

′(ρz)
ν , z

2p′′(ρz)+2(ν−1)zp′(ρz)+(ν−1)(ν−2)p(ρz)
ν(ν−1) ; ρz, ξ

)
∈ hρ(U).

By making use of Corollary 2.3 with ω(z) = ρz, we obtain pρ(z) ≺ qρ(z) for
ρ ∈ (ρ0, 1). By letting ρ −→ 1 we obtain

p(z) ≺ q(z)
i.e.

J cν+1f(z) ≺ q(z) (z ∈ U). �

Next theorem gives the best dominant of the strong differential subordination (2.7).
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Theorem 2.7. Let h(z) be univalent in U and φ : C3 ×U× Ū −→ C. Suppose that the
differential equation

φ
(
q(z), zq

′(z)+(ν−1)q(z)
ν , z

2q′′(z)+2(ν−1)zq′(z)+(ν−1)(ν−2)q(z)
ν(ν−1) ; z, ξ

)
= h(z) (2.8)

has a solution q(z) with q(0) = 0 and satisfies any one of the following conditions:

(i) q ∈ Q0 and φ ∈ φJ [h, q].

(ii) q is univalent in U and φ ∈ φJ [h, qρ] for some ρ ∈ (0, 1), or

(iii) q is univalent in U and there exists ρ0 ∈ (0, 1) such that φ ∈ φJ [hρ, qρ] for
all ρ ∈ (ρ0, 1).
If f ∈ A satisfies (2.7) and φ(J cν+1f(z),J cν f(z),J cν−1f(z); z, ξ) is analytic in U, then

J cν+1f(z) ≺ q(z) (z ∈ U),

and q is the best dominant.

Proof. By applying Theorem 2.4 and Theorem 2.6 we deduce that q is dominant of
(2.7). Since q satisfies (2.8), it is also a solution of (2.7) and therefore q will be the
dominant of all dominants of (2.7). Hence q will be the best dominant of (2.7). �

In the particular case when q(z) = Mz(M > 0) and in view of Definition 2.1,
the class of admissible functions φJ [Ω, q] denoted by φJ [Ω,M ] is described below.

Definition 2.8. Let Ω be a set in C, ν ∈ C with ν 6= 0, 1 and M > 0. The class of
admissible functions φJ [Ω,M ] consists of those functions φ : C3 × U× Ū −→ C such
that

φ

(
Meiθ,

α+ ν − 1

ν
Meiθ,

L+ [2(ν − 1)α+ (ν − 1)(ν − 2)]Meiθ

ν(ν − 1)
; z, ξ

)
/∈ Ω, (2.9)

(z ∈ U, ξ ∈ Ū, <(Le−iθ) ≥ α(α− 1)M, θ ∈ R, α ≥ 1).

Corollary 2.9. Let φ ∈ φJ [Ω,M ]. If f ∈ A satisfies

φ(J cν+1f(z),J cν f(z),Jν−1f(z); z, ξ) ∈ Ω (z ∈ U, ξ ∈ Ū),

then

J cν+1f(z) ≺Mz (z ∈ U).

In the special case Ω = q(U) = {w : |w| < M}, the class φJ [Ω,M ] is simply
denoted by φJ [M ].

Corollary 2.10. Let φ ∈ φJ [M ]. If f ∈ A satisfies

|φ(J cν+1f(z),J cν f(z),J cν−1f(z); z, ξ)| < M (z ∈ U, ξ ∈ Ū),

then

|J cν+1f(z)| < M (z ∈ U).
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3. Superordination and sandwich-type results

In this section, strong differential superordination, the dual problem of strong
differential subordination for generalized Struve function defined as (1.8) is investi-
gated. For this purpose, we define the class of admissible functions as follows:

Definition 3.1. Let Ω be a set in C, q ∈ H[0, 1] with q′(z) 6= 0, <(ν) > 0. The class
of admissible functions φ′J [Ω, q] consists of those functions φ : C3×U× Ū −→ C that
satisfy the admissibility condition

φ(u, v, w; ζ, ξ) ∈ Ω,

whenever

u = q(z), v =
zq′(z) +m(ν − 1)

mν
q(z),

and

<
[
ν(ν − 1)w − (ν − 1)(ν − 2)u

νv − (ν − 1)u
+ (3− 2ν)

]
≤ 1

m
<
(

1 +
zq′′(z)

q′(z)

)
(z ∈ U, ξ ∈ Ū, ζ ∈ ∂U, m ≥ 1).

Theorem 3.2. Let φ ∈ φ′J [Ω, q]. If f ∈ A, J cν+1f(z) ∈ Q0 and

φ(J cν+1f(z),J cν f(z),J cν−1f(z); z, ξ)

is univalent in U, then

Ω ⊂
{
φ(J cν+1f(z),J cν f(z),J cν−1f(z); z, ξ) : z ∈ U, ξ ∈ Ū

}
(3.1)

implies the following subordination result holds

q(z) ≺ J cν+1f(z) (z ∈ U).

Proof. Let

p(z) = J cν+1f(z).

Then, from (2.6) and (3.1) we obtain

Ω ⊂
{
ψ(p(z), zp′(z), z2p′′(z); z, ξ) : z ∈ U, ξ ∈ Ū

}
.

Since
t

s
+ 1 =

ν(ν − 1)w − (ν − 1)(ν − 2)u

νv − (ν − 1)u
+ (3− 2ν),

the admissibility condition for φ ∈ φ′J [Ω, q] in Definition 3.1 is equivalent to the
admissibility condition for ψ as given in Definition 1.5. Hence ψ ∈ ψ′[Ω, q] and by
Lemma 1.7,

q(z) ≺ p(z) (z ∈ U),

or equivalently,

q(z) ≺ J cν+1f(z) (z ∈ U). �

If Ω 6= C is a simply connected domain, then Ω = h(U) for some conformal
mapping h of U onto Ω. In this case, the class φ′J [h(U), q] is written as φ′J [h, q]. The
following result is the immediate consequence of Theorem 3.2.
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Theorem 3.3. Let q ∈ H[0, 1], h be analytic in U and φ ∈ φ′J [h, q]. If f ∈ A,
J cν+1f(z) ∈ Q0 and

φ(J cν+1f(z),J cν f(z),J cν−1f(z); z, ξ)

is univalent in U, then

h(z) ≺≺ φ(J cν+1f(z),J cν f(z),J cν−1f(z); z, ξ) (z ∈ U, ξ ∈ Ū), (3.2)

implies

q(z) ≺ J cν+1f(z) (z ∈ U).

Theorem 3.2 and Theorem 3.3 can only be used to obtain subordinants of dif-
ferential superordination of the form (3.1) or (3.2). The following theorem proves the
existence of the best dominant of (3.2) for an appropriate φ.

Theorem 3.4. Let h be analytic in U and φ : C3 × U × Ū −→ C. Suppose that the
differential equation

φ
(
q(z), zq

(z)+(ν−1)q(z)
ν , z

2q′′(z)+2(ν−1)zq′(z)+(ν−1)(ν−2)q(z)
ν(ν−1) ; z, ξ

)
= h(z) (3.3)

has a solution q ∈ Q0. If φ ∈ φ′J [h, q], f ∈ A, J cν+1f(z) ∈ Q0 and

φ(J cν+1f(z),J cν f(z),J cν−1f(z); z, ξ) (3.4)

is univalent in U, then

h(z) ≺≺ φ(J cν+1f(z),J cν f(z),J cν−1f(z); z, ξ) (z ∈ U, ξ ∈ Ū), (3.5)

implies

q(z) ≺ J cν+1f(z) (z ∈ U).

and q(z) is the best subordinant.

Proof. By applying Theorem 3.3, we deduce that q is a dominate of (3.2). Since q
satisfies (3.3), it is also a solution of (3.2) and therefore q will be dominated by all
dominates of (3.2). Hence q is the best dominates of (3.2). �

Combining Theorem 2.4 and Theorem 3.3, we obtain the following sandwich-type
theorem.

Theorem 3.5. Let h1(z) and q1(z) be analytic functions in U, h2 be univalent function
in U, q2 ∈ Q0 with q1(0) = q2(0) = 0 and φ ∈ φJ [h2, q2] ∩ φ′J [h1, q1]. If f ∈ A,
J cν+1f(z) ∈ H[0, 1] ∩Q0 and

φ(J cν+1f(z),J cν f(z),J cν−1f(z); z, ξ)

is univalent function in U, then

h1(z) ≺≺ φ(J cν+1f(z),J cν f(z),J cν−1f(z); z, ξ) ≺≺ h2(z),

implies q1(z) ≺ J cν+1f(z) ≺ q2(z), (z ∈ U).
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[12] Raza, M., Yağmur, N., Some properties of a class of analytic functions defined by gen-
eralized Struve functions, Turk. J. Math., 39(2015), 931-944.
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Stud. Univ. Babeş-Bolyai Math. 62(2017), No. 2, 217–232
DOI: 10.24193/subbmath.2017.2.08

Mellin transform in bicomplex space and
its application

Ritu Agarwal, Mahesh Puri Goswami and Ravi P. Agarwal

Abstract. Motivated by the recent applications of bicomplex theory to the study
of functions of large class, in this paper, we define bicomplex Mellin transform
of bicomplex-valued functions. Also, we derive some of it’s basic properties and
inversion theorem in bicomplex space. Application of bicomplex Mellin transform
in networks with time-varying parameters problem has been illustrated.

Mathematics Subject Classification (2010): 30G35, 42B10.

Keywords: Bicomplex functions, bicomplex numbers, bicomplex Laplace trans-
form, Mellin transform.

1. Introduction

In this paper, we extend the Mellin transform of complex-valued function in com-
plex variable to Mellin transform of bicomplex-valued function in bicomplex variable.
In 1892, Segre Corrado [18] defined bicomplex numbers as

C2 = {ξ : ξ = x0 + i1x1 + i2x2 + jx3| x0, x1, x2, x3 ∈ C0},

or

C2 = {ξ : ξ = z1 + i2z2| z1, z2 ∈ C1}.
where i1 and i2 are imaginary units such that i21 = i22 = −1, i1i2 = i2i1 = j, j2 = 1
and C0, C1 and C2 are sets of real numbers, complex numbers and bicomplex num-
bers, respectively. The set of bicomplex numbers is a commutative ring with unit and
zero divisors. Hence, contrary to quaternions, bicomplex numbers are commutative
with some non-invertible elements situated on the null cone.

In 1928 and 1932, Futagawa Michiji originated the concept of holomorphic func-
tions of a bicomplex variable in a series of papers [10], [11]. In 1934, Dragoni [8] gave
some basic results in the theory of bicomplex holomorphic functions while Price G.B.
[16] and Rönn S. [17] have developed the bicomplex algebra and function theory.
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In recent developments, authors have done efforts to extend Polygamma func-
tion [13], inverse Laplace transform, it’s convolution theorem [2], Stieltjes transform
[1], Tauberian Theorem of Laplace-Stieltjes transform [3] and Bochner Theorem of
Fourier-Stieltjes transform [4] in the bicomplex variable from their complex counter-
part. In their procedure, the idempotent representation of bicomplex numbers plays
a vital role.

Hjalmar Mellin (1854-1933, see, e.g. [15]) gave his name to the Mellin transform
that associates to a complex-valued function f(t) defined over the interval (0,∞), the
function of complex variable s, as

f̄(s) =

∫ ∞
0

ts−1f(t)dt.

The change of variables t = e−x shows that the Mellin transform is closely related to
the Laplace transform. General properties of the Mellin transform are usually treated
in detail in books on integral transforms, like those of Poularikas A.D. [15] and Davies
B. [6]. In 1959, Francis R.G. [12] discussed the application of complex Mellin transform
to networks with time-varying parameters. In 1995, Flajolet P. et al. [9] used Mellin
transform for the asymptotic analysis of harmonic sums.

For solving the large class of bicomplex partial differential equations, we need
integral transforms defined for large class. In this process we derive bicomplex Mellin
transform with convergence conditions that can be capable of transferring the signals
from real-valued t domain to bicomplexified frequency ξ domain.
Idempotent Representation: Every bicomplex number can be uniquely expressed as a
complex combination of e1 and e2, viz.

ξ = (z1 + i2z2) = (z1 − i1z2)e1 + (z1 + i1z2)e2,

(where e1 = 1+j
2 , e2 = 1−j

2 ; e1 + e2 = 1 and e1e2 = e2e1 = 0).
This representation of a bicomplex number is known as Idempotent Represen-

tation of ξ. The coefficients (z1 − i1z2) and (z1 + i1z2) are called the Idempotent
Components of the bicomplex number ξ = z1 + i2z2 and {e1, e2} is called Idempotent
Basis.
Cartesian Set: The Auxiliary complex spaces A1 and A2 are defined as follows:

A1 = {w1 = z1 − i1z2, ∀ z1, z2 ∈ C1}, A2 = {w2 = z1 + i1z2, ∀ z1, z2 ∈ C1}.

A cartesian set X1 ×e X2 determined by X1 ⊆ A1 and X2 ⊆ A2 and is defined as:

X1 ×e X2 = {z1 + i2z2 ∈ C2 : z1 + i2z2 = w1e1 + w2e2, w1 ∈ X1, w2 ∈ X2}.

With the help of idempotent representation, we define projection mappings P1 : C2 →
A1 ⊆ C1, P2 : C2 → A2 ⊆ C1 as follows:

P1(z1 + i2z2) = P1[(z1 − i1z2)e1 + (z1 + i1z2)e2] = (z1 − i1z2) ∈ A1, ∀ z1 + i2z2 ∈ C2,

P2(z1 + i2z2) = P2[(z1 − i1z2)e1 + (z1 + i1z2)e2] = (z1 + i1z2) ∈ A2, ∀ z1 + i2z2 ∈ C2.

In the following theorem, Price G.B. discussed the convergence of bicomplex
function with respect to it’s idempotent complex component functions. This theorem
is useful in proving our results.
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Theorem 1.1. (Price G.B. [16]). F (ξ) = Fe1(ξ1)e1+Fe2(ξ2)e2 is convergent in domain
D ⊆ C2 iff Fe1(ξ1) and Fe2(ξ2) under functions P1 : D → D1 ⊆ C1 and P2 : D →
D2 ⊆ C1 are convergent in domains D1 and D2, respectively.

The organization of this paper is as follows:
In Section 2, we establish bicomplex Mellin transform with convergence conditions. In
Section 3, we present some useful properties of bicomlex Mellin transform. In Section
4, we establish the inversion theorem for bicomplex Mellin transform. In section 5, we
discuss application of bicomplex Mellin transform in finding the solution of bicomplex
partial differential equation generated by network model and last Section 6 contains
the conclusion.

2. Bicomplex Mellin transform

Let f1(t) be a complex-valued continuous function on the interval (0,∞) with
f1(t) = O (t−α1) as t → 0+ and f1(t) = O

(
t−β1

)
as t → ∞, where α1 < β1. Then

Mellin transform of f1(t) is

M [f1(t); s1] =

∫ ∞
0

ts1−1f1(t)dt = f̄1(s1), s1 ∈ C1 (2.1)

where f̄1(s1) is analytic and convergent in the vertical strip

Ω1 = {s1 ∈ C1 : α1 < Re(s1) < β1} . (2.2)

Similarly,f2(t) be a complex-valued continuous function on the interval (0,∞) with
f2(t) = O (t−α2) as t → 0+ and f2(t) = O

(
t−β2

)
as t → ∞, where α2 < β2. Then

Mellin transform of f2(t) is

M [f2(t); s2] =

∫ ∞
0

ts2−1f2(t)dt = f̄2(s2), s2 ∈ C1 (2.3)

where f̄2(s2) is analytic and convergent in the vertical strip

Ω2 = {s2 ∈ C1 : α2 < Re(s2) < β2} . (2.4)

Since f̄1(s1) and f̄2(s2) are complex functions which are analytic and convergent in
the strips Ω1 and Ω2 respectively. Now, we have linear combination of f̄1(s1) and
f̄2(s2) w.r.t. e1 and e2 respectively

f̄1(s1)e1 + f̄2(s2)e2 =

(∫ ∞
0

ts1−1f1(t)dt

)
e1 +

(∫ ∞
0

ts2−1f2(t)dt

)
e2

f̄(ξ) =

∫ ∞
0

t(s1e1+s2e2)−1 (f1(t)e1 + f2(t)e2) dt

f̄(ξ) =

∫ ∞
0

tξ−1f(t)dt (2.5)

where ξ = s1e1 + s2e2 and f̄(ξ) is analytic and convergent in the strip

Ω = {ξ : ξ = s1e1 + s2e2 ∈ C2;α < Re(P1 : ξ) < β;α < Re(P2 : ξ) < β;

α = max(α1, α2) and β = min(β1, β2)} . (2.6)
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∵ α < Re(s1) = x1 < β and α < Re(s2) = x2 < β, we have

ξ = (x1 + i1y1)e1 + (x2 + i1y2)e2 = (x1 + i1y1)

(
1 + i1i2

2

)
+ (x2 + i1y2)

(
1− i1i2

2

)
=
x1 + x2

2
+

(
y1 + y2

2

)
i1 +

(
y2 − y1

2

)
i2 +

(
x1 − x2

2

)
i1i2.

Now, there are three possible cases:

1. If x1 = x2 = a0 (say) then x1−x2

2 = 0 and x1+x2

2 = a0.
Hence, if ξ = a0 + a1i1 + a2i2 + a3i1i2, then α < a0 < β and a3 = 0.

2. If x1 > x2, then x1−x2

2 > 0,
x1+x2

2 < β+x2

2 < β+x2

2 + β−x1

2 = β − x1−x2

2

and x1+x2

2 > α+x1

2 > α+x1

2 + α−x2

2 = α+ x1−x2

2 .
Thus, α+ a3 < a0 < β − a3 and a3 > 0.

3. If x1 < x2, then x1−x2

2 < 0,
x1+x2

2 < β+x1

2 < β+x1

2 + β−x2

2 = β + x1−x2

2

and x1+x2

2 > α+x2

2 > α+x2

2 + α−x1

2 = α− x1−x2

2 .
Thus, α− a3 < a0 < β + a3 and a3 < 0.

These three conditions can be written in the following set builder form

Ω1 = {ξ = a0 + a1i1 + a2i2 + a3i1i2 : α < a0 < β and a3 = 0},
Ω2 = {ξ = a0 + a1i1 + a2i2 + a3i1i2 : α+ a3 < a0 < β − a3 and a3 > 0},
Ω3 = {ξ = a0 + a1i1 + a2i2 + a3i1i2 : α− a3 < a0 < β + a3 and a3 < 0}.

Thus, α < Re(P1 : ξ) < β and α < Re(P2 : ξ) < β implies ξ ∈ Ω1 ∪ Ω2 ∪ Ω3 = Ω
which can be defined as:

Ω = {ξ = a0 + a1i1 + a2i2 + a3i1i2 ∈ C2 : α+ |a3| < a0 < β − |a3|} (2.7)

or equivalently,

Ω = {ξ ∈ C2 : α+ |Imj(ξ)| < Re(ξ) < β − |Imj(ξ)|}

where Imj(ξ) denotes the imaginary part w.r.t. j unit of a bicomplex number.
Conversely, the existence condition of bicomplex Mellin transform f̄(ξ) can be

obtained in the following way:
If ξ = a0 + a1i1 + a2i2 + a3i1i2 ∈ Ω,

α+ |a3| < a0 < β − |a3|. (2.8)

Now, in idempotent components, ξ can be expressed as

ξ = a0 + a1i1 + a2i2 + a3i1i2

= [(a0 + a3) + i1(a1 − a2)] e1 + [(a0 − a3) + i1(a1 + a2)] e2

= s1e1 + s2e2.

Depending on the value of a3, there arises three cases:

1. a3 = 0 and α < a0 < β which trivially leads α < a0+a3 < β and α < a0−a3 < β.
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2. When a3 > 0, from the inequality (2.8) α+a3 < a0 < β−a3, we get α < a0−a3

and a0 + a3 < β. This result can be interpreted as α < a0 − a3 < a0 + a3 < β.
3. When a3 < 0, from the inequality (2.8) α−a3 < a0 < β+a3, we get α < a0 +a3

and a0 − a3 < β. This result can be interpreted as α < a0 + a3 < a0 − a3 < β.

Hence the result.
Now, we define the Mellin transform in the bicomplex space as follows:

Definition 2.1. Let f(t) be a bicomplex-valued continuous function on the interval
(0,∞) with f(t) = O (t−α) as t → 0+ and f(t) = O

(
t−β
)

as t → ∞, where α < β.
Then bicomplex Mellin transform of f(t) defined as

M[f(t); ξ] =

∫ ∞
0

tξ−1f(t)dt = f̄(ξ), ξ ∈ Ω

where f̄(ξ) is analytic and convergent in Ω defined in

Ω = {ξ ∈ C2 : α+ |Imj(ξ)| < Re(ξ) < β − |Imj(ξ)|} (2.9)

where Imj(ξ) denotes the imaginary part w.r.t. j unit of a bicomplex number.

Following is the illustration to explain the process of finding the bicomplex Mellin
transform of a bicomplex valued function.

Example 2.2. Let f(t) = taU(t− t0), where U(t− t0) is unit-step function, then

M[f(t); ξ] = − tξ+a0

ξ + a
, Re(ξ + a) < − |Imj(ξ + a)| .

Solution. By applying the definition of bicomplex Mellin transform

M[f(t); ξ] =

∫ ∞
0

tξ−1taU(t− t0)dt

=

∫ ∞
t0

tξ+a−1dt

= − tξ+a0

ξ + a
.

Table 1. Bicomplex Mellin transform of some basic functions

S.No. f(t)

Bicomplex
Hankel
Transform
F (ξ)

Region of Convergence

1. (1 + t)−a Γ(ξ)Γ(a−ξ)
Γ(a)

|Imj(a− ξ)| < Re(a− ξ)
2. (1 + t)−1 π

sin(πξ)
|Imj(ξ)| < Re(ξ) < 1− |Imj(ξ)|

3. ent, n > 0 Γ(ξ)
nξ

Re(ξ) > |Imj(ξ)|

4. sin(at), a > 0
Γ(ξ) sin(πξ2 )

aξ
−1+ |Imj(ξ)| < Re(ξ) < 1−|Imj(ξ)|

5. cos(at), a > 0
Γ(ξ) cos(πξ2 )

aξ
|Imj(ξ)| < Re(ξ) < 1− |Imj(ξ)|

6. log(1 + t) π
ξ sin(πξ)

−1 + |Imj(ξ)| < Re(ξ) < − |Imj(ξ)|
7. t−a − 1

ξ−a Re(ξ − a) < − |Imj(ξ − a)|
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3. Properties of bicomplex Mellin transform

In this section, we discuss the basic properties of bicomplex Mellin transform
viz. linearity property, change of scale property, shifting property, Mellin transform of
derivatives and operators, relation with bicomplex Laplace transform and some other
properties.

Theorem 3.1. (Linearity Property). Let f(t) and g(t) are bicomplex-valued functions
with f(t) = O (t−α1) , g(t) = O (t−α2) as t → 0+ and f(t) = O

(
t−β1

)
, g(t) =

O
(
t−β2

)
as t → ∞, with max(α1, α2) + |Imj(ξ)| < Re(ξ) < min(β1, β2) − |Imj(ξ)|,

then

M[c1f(t) + c2g(t); ξ] = c1M[f(t); ξ] + c2M[g(t); ξ] (3.1)

where c1 and c2 are arbitrary constants.

Proof. By applying the definition of bicomplex Mellin transform

M[c1f(t) + c2g(t); ξ] =

∫ ∞
0

tξ−1[c1f(t) + c2g(t)]dt

= c1

∫ ∞
0

tξ−1f(t)dt+ c2

∫ ∞
0

tξ−1g(t)dt

= c1M[f(t); ξ] + c2M[g(t); ξ].

�

Theorem 3.2. (Change of scale property). Let f̄(ξ) be the bicomplex Mellin transform
of bicomplex-valued function f(t), then

M[f(at); ξ] = a−ξ f̄(ξ), ξ ∈ Ω, a > 0 (3.2)

where Ω is defined in (2.9).

Proof. By applying the definition of bicomplex Mellin transform

M[f(at); ξ] =

∫ ∞
0

tξ−1f(at)dt, [where ξ = s1e1 + s2e2]

=

(∫ ∞
0

ts1−1f1(at)dt

)
e1 +

(∫ ∞
0

ts2−1f2(at)dt

)
e2

Put at = u, to obtain

=
1

as1

(∫ ∞
0

ts1−1f1(u)dt

)
e1 +

1

as2

(∫ ∞
0

ts2−1f2(u)dt

)
e2

=
1

as1e1+s2e2

∫ ∞
0

ts1e1+s2e2−1 (f1(u)e1 + f2(u)e2) dt

=
1

aξ

∫ ∞
0

tξ−1f(u)dt

=
f̄(ξ)

aξ
.

�
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Theorem 3.3. (Bicomplex Mellin Transform of Derivatives). Let f̄(ξ) be bicomplex
Mellin transform of bicomplex-valued function f(t), then

M
[
f (n)(t); ξ

]
= (−1)n

Γ(ξ)

Γ(ξ − n)
f̄(ξ − n), (ξ − n) ∈ Ω (3.3)

where Ω is defined in (2.9) and provided tξ−r−1f (r)(t) vanishes as t→ 0 and as t→∞
for r = 0, 1, 2, · · · , (n− 1).

Proof. For n = 1, according to the definition of bicomplex Mellin transform,

M
[
f

′
(t); ξ

]
=

∫ ∞
0

tξ−1f
′
(t)dt

which on integration by parts, gives

M
[
f

′
(t); ξ

]
= tξ−1f(t)|∞0 − (ξ − 1)

∫ ∞
0

tξ−2f(t)dt

= −(ξ − 1)f̄(ξ − 1).

Therefore, the result is true for n = 1. Let the the above result is true for n = m

M
[
f (m)(t); ξ

]
= (−1)m

Γ(ξ)

Γ(ξ −m)
f̄(ξ −m). (3.4)

Now, for n = m+ 1

M
[
f (m+1)(t); ξ

]
=

∫ ∞
0

tξ−1f (m+1)(t)dt

Integrating by parts, we get

M
[
f (m+1)(t); ξ

]
= tξ−1f (m)(t)|∞0 − (ξ − 1)

∫ ∞
0

tξ−2f (m)(t)dt

= −(ξ − 1)(−1)m
Γ(ξ − 1)

Γ(ξ −m− 1)
f̄(ξ −m− 1), [using (3.4)]

= (−1)m+1 Γ(ξ)

Γ(ξ −m− 1)
f̄(ξ −m− 1).

Therefore, the result is true for n = m + 1. Hence, by the principal of mathematical
induction the result is true for all n = 1, 2, · · · . Therefore,

M
[
f (n)(t); ξ

]
= (−1)n

Γ(ξ)

Γ(ξ − n)
f̄(ξ − n). �

Theorem 3.4. (Shifting Property). Let f̄(ξ) be bicomplex Mellin transform of
bicomplex-valued function f(t). Then

M [taf(t); ξ] = f̄(ξ + a), (ξ + a) ∈ Ω, a ∈ C2 (3.5)

where Ω is defined in (2.9).

Proof. By applying the definition of bicomplex Mellin transform,

M [taf(t); ξ] =

∫ ∞
0

tξ−1taf(t)dt =

∫ ∞
0

tξ+a−1f(t)dt = f̄(ξ + a). �
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Theorem 3.5. Let f̄(ξ) be bicomplex Mellin transform of bicomplex-valued function
f(t). Then

M [f(ta); ξ] =
1

a
f̄

(
ξ

a

)
,

ξ

a
∈ Ω, 0 6= a ∈ C0 (3.6)

where Ω is defined in (2.9).

Proof. By applying the definition of bicomplex Mellin transform,

M [f(ta); ξ] =

∫ ∞
0

tξ−1f(ta)dt

=
1

a

∫ ∞
0

u
ξ
a−1f(u)du [substituting ta = u]

=
1

a
f̄

(
ξ

a

)
.

�

Theorem 3.6. Let f̄(ξ) be bicomplex Mellin transform of bicomplex-valued function
f(t). Then

M
[
tnf (n)(t); ξ

]
= (−1)n

Γ(ξ + n)

Γ(ξ)
f̄(ξ), ξ ∈ Ω (3.7)

where Ω is defined in (2.9) and provided tξ−rf (r)(ξ) vanishes as t→ 0 and as t→∞
for r = 0, 1, 2, · · · , (n− 1).

Proof. By applying the definition of bicomplex Mellin transform,

M
[
tnf (n)(t); ξ

]
=

∫ ∞
0

tξ−1tnf (n)(t)dt, [where ξ = s1e1 + s2e2]

=

(∫ ∞
0

ts1−1tnf
(n)
1 (t)dt

)
e1 +

(∫ ∞
0

ts2−1tnf
(n)
2 (t)dt

)
e2

= (−1)n
Γ(s1 + n)

Γ(s1)
f̄1(s1)e1 + (−1)n

Γ(s2 + n)

Γ(s2)
f̄2(s2)e2,

[using [7, Equation (8.3.12)]]

= (−1)n
Γ(s1e1 + s2e2 + n)

Γ(s1e1 + s2e2)

(
f̄1(s1)e1 + f̄2(s2)e2

)
= (−1)n

Γ(ξ + n)

Γ(ξ)
f̄(ξ).

�

Theorem 3.7. (Bicomplex Mellin Transform of Differential Operators). Let f̄(ξ) be
bicomplex Mellin transform of bicomplex-valued function f(t). Then

M

[(
t
d

dt

)2

f(t); ξ

]
= M

[
t2f

′′
(t) + tf

′
(t); ξ

]
= (−1)2ξ2f̄(ξ), ξ ∈ Ω (3.8)

where Ω is defined in (2.9).
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Proof. By applying the definition of bicomplex Mellin transform,

M

[(
t
d

dt

)2

f(t); ξ

]
= M

[
t2f

′′
(t) + tf

′
(t); ξ

]
= M

[
t2f

′′
(t); ξ

]
+ M

[
tf

′
(t); ξ

]
= ξ(ξ + 1)f̄(ξ)− ξf̄(ξ)

= (−1)2ξ2f̄(ξ).

In general,

M

[(
t
d

dt

)n
f(t); ξ

]
= (−1)nξnf̄(ξ). �

Theorem 3.8. (Bicomplex Mellin Transform of Integrals). Let f̄(ξ) be bicomplex Mellin
transform of bicomplex-valued function f(t). Then

M

[∫ t

0

f(x)dx; ξ

]
= −1

ξ
f̄(ξ + 1), (ξ + 1) ∈ Ω (3.9)

where Ω is defined in (2.9).

Proof. We write

g(t) =

∫ t

0

f(x)dx

so that g
′
(t) = f(t) with g(0) = 0. Taking the bicomplex Mellin transform of g

′
(t)

and using Theorem 3.3 therein, we get

M
[
g

′
(t); ξ

]
= −(ξ − 1)M[g(t); ξ − 1]

= −(ξ − 1)M

[∫ t

0

f(x)dx; ξ − 1

]
Replacing ξ by ξ + 1, we get the desired result (3.9). �

3.1. Relation with Bicomplex Laplace Transform

The bicomplex Laplace transform and its properties are discussed by Kumar A.
and Kumar P. [14]. It is defined as

Definition 3.9. Let f(t) be a bicomplex-valued function of exponential order α ∈ C0.
Then Laplace Transform of f(t) for t ≥ 0 can be defined as:

L{f(t)} =

∫ ∞
0

f(t)e−ξtdt = F (ξ)

Here F (ξ) exist and is convergent for all ξ ∈ D = D1 ∪D2 ∪D3

or

D = {ξ ∈ C2 : Hρ(ξ) represent a Right half-plane a0 > α+ |a3|},
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where

D1 = {ξ = a0 + a1i1 + a2i2 + a3i1i2 : a0 > α, a3 = 0},
D2 = {ξ = a0 + a1i1 + a2i2 + a3i1i2 : a0 > α+ a3, a3 > 0}

and

D3 = {ξ = a0 + a1i1 + a2i2 + a3i1i2 : a0 > α− a3, a3 < 0}.

In D, there are infinite ξ which have same Hρ hyperbolic projection because a1 and a2

are free from restriction.

Therefore, the usual right-sided bicomplex Laplace transform is analytic in half-
plane Re(ξ) > α+ |Imj(ξ)|. In the same way, left-sided bicomplex Laplace transform
is analytic in the region Re(ξ) < β−|Imj(ξ)|. If the two half-planes overlap, the region
of analyticity of the two-sided bicomplex Laplace transform is thus the strip

D = {ξ ∈ C2 : α+ |Imj(ξ)| < Re(ξ) < β − |Imj(ξ)|} .

Hence, D is equivalent to Ω defined in (2.9).

Theorem 3.10. Let f̄(ξ) be bicomplex Mellin transform of bicomplex-valued function
f(t). Then

M[f(t); ξ] =

∫ ∞
−∞

eξxf(e−x)dx = L
[
f(e−x); ξ

]
, ξ ∈ Ω (3.10)

where Ω is defined in (2.9).

Proof. Taking t = e−x in the definition of bicomplex Mellin transform

M[f(t); ξ] =

∫ ∞
0

tξ−1f(t)dt,

we get

M[f(t); ξ] =

∫ ∞
−∞

eξxf(e−x)dx = L
[
f(e−x); ξ

]
. �

4. Inversion of bicomplex Mellin transform

In this section, we discuss the inversion of bicomplex Mellin transform. Let f̄(ξ)
be the bicomplex Mellin transform of bicomplex-valued continuous function f(t). Then
f̄(ξ) = f̄1(s1)e1 + f̄2(s2)e2 is analytic in the strip Ω, which is defined in (2.6). The
inverse formula for complex mellin transform (see, e.g. Poularikas A.D. [15, chapter
11] and Davies B. [6, p. 195-210]) is

f1(t) =
1

2πi1

∫ c1+i1∞

c1−i1∞
t−s1 f̄1(s1)ds1, α1 < c1 < β1

=
1

2πi1

∫
Ω1

t−s1 f̄1(s1)ds1 (4.1)
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where, Ω1 is defined in (2.2). Similarly, another inverse formula for complex Mellin
transform is

f2(t) =
1

2πi1

∫ c2+i1∞

c2−i1∞
t−s2 f̄2(s2)ds2, α2 < c2 < β2

=
1

2πi1

∫
Ω2

t−s2 f̄2(s2)ds2 (4.2)

where, Ω2 is defined in (2.3).
Now, using complex inversions (4.1) and (4.2), we obtain the bicomplex-valued

function as

f(t) = f1(t)e1 + f2(t)e2

=

(
1

2πi1

∫
Ω1

t−s1 f̄1(s1)ds1

)
e1 +

(
1

2πi1

∫
Ω2

t−s2 f̄2(s2)ds2

)
e2

=
1

2πi1

(∫
(Ω1,Ω2)

t−(s1e1+s2e2)
(
f̄1(s1)e1 + f̄2(s2)e2

)
d(s1e1 + s2e2)

)

=
1

2πi1

∫
Ω

t−s1 f̄(ξ)dξ (4.3)

where, Ω is defined in (2.9).
Consider the problem of asymptotically expanding f(t) as t → 0+, when f̄(ξ)

is known to be continuable in −M + |Imj(ξ)| ≤ Re(ξ) ≤ α − |Imj(ξ)| for some
M > 0. We also postulate that f̄(ξ) has finitely many poles λk such that Re(λk) >
−M + |Imj(λk)|. Then

f(t) =
∑
λk∈K

Res
[
t−ξ f̄(ξ), ξ = λk

]
+O

(
tM
)
, as t→ 0+

where K is the set of singularities and M is as large as we want. Similarly, for problem
of asymptotically expanding f(t) as t→∞. Then contour taken in right and side of
the fundamental strip, we have

f(t) = −
∑
λk∈K

Res
[
t−ξ f̄(ξ), ξ = λk

]
+O

(
t−M

)
, as t→∞.

Following is the illustration to explain the process of finding the inverse bicomplex
Mellin transform.

Example 4.1. Let f̄(ξ) = 1
(ξ−a)(ξ−b) , for Re(ξ − a) < − |Imj(ξ − a)| and Re(a− b) <

− |Imj(a− b)|. Then find the inverse bicomplex Mellin transform f(t) of f̄(ξ).
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Solution. By applying the inverse bicomplex Mellin transform on f̄(ξ)

f(t) =
1

2πi1

∫
Ω

t−ξ f̄(ξ)dξ

= −
[
Res

(
t−ξ

1

(ξ − a)(ξ − b)
, ξ = a

)
+ Res

(
t−ξ

1

(ξ − a)(ξ − b)
, ξ = b

)]
=

1

b− a
(
t−a − t−b

)
.

5. Application of bicomplex Mellin transform

In this paper, we are interested in determining the extent to which the output
voltage V and current I using by bicomplex concept differs from their input values
as the length of the transmission line tends to a very small value.

Now, let us define bicomplex scalar field as

F ≡ V + i2I (5.1)

where voltage V and current I are complex scalar fields. Now, we consider an equiv-
alent circuit of a transmission line of small length ∆x containing resistance R∆x,
capacitance C∆x, and inductance L∆x as shown in Figure 1.

Figure 1. Equivalent circuit of a transmission line

The above figure is a symmetrical network. By using the Kirchhoff’s voltage law
(KVL), we have

V =
1

2
RI∆x+

1

2
L
∂I

∂t
∆x+

1

2
L
∂

∂t
(I + ∆I)∆x+

1

2
R(I + ∆I)∆x+ V + ∆V. (5.2)

Dividing (5.2) by ∆x and simplifying, we get

∆V

∆x
= −

[
RI + L

∂I

∂t
+

(
L

2

∂

∂t

∆I

∆x
+
R

2

∆I

∆x

)
∆x

]
. (5.3)

Taking limit as ∆x→ 0, we get

∂V

∂x
= −

[
RI + L

∂I

∂t

]
. (5.4)
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By applying Kirchhoff’s current law (KCL) on the equivalent circuit of the transmis-
sion line, we get

I = Ic + I + ∆I

= C
∂

∂t

(
V +

∆V

2

)
∆x+ I + ∆I. (5.5)

Dividing (5.5) by ∆x and simplifying, we get

∆I

∆x
= −

[
C
∂V

∂t
+
C

2

∂

∂t

(
∆V

∆x

)
∆x

]
. (5.6)

Taking limit as ∆x→ 0, we get

∂I

∂x
= −C ∂V

∂t
. (5.7)

The differential equations in (5.4) and (5.7) describes the evaluation of current and
voltage in a lossy transmission line. Differentiating (5.4) w.r.t. x and simplifying using
(5.7), we get

∂2V

∂x2
= CL

∂2V

∂t2
+ CR

∂V

∂t
. (5.8)

Similarly, differentiating (5.7) w.r.t. x and simplifying using (5.4), we get

∂2I

∂x2
= CL

∂2I

∂t2
+ CR

∂I

∂t
. (5.9)

Equations (5.8) and (5.9) are hyperbolic partial differential equations which describes
the voltage and current along power transmission lines.

Combining equation (5.8) and (5.9) with the help of bicomplex unit i2 as

∂2V

∂x2
+ i2

∂2I

∂x2
= CL

(
∂2V

∂t2
+ i2

∂2I

∂t2

)
+ CR

(
∂V

∂t
+ i2

∂I

∂t

)
⇒ ∂2

∂x2
(V + i2I) = CL

∂2

∂t2
(V + i2I) + CR

∂

∂t
(V + i2I)

⇒ ∂2

∂x2
F (x, t) = CL

∂2

∂t2
F (x, t) + CR

∂

∂t
F (x, t) (5.10)

where F (x, t) is bicomplex-valued function defined by (5.1).
In particular, a circuit which has resistance R = 1

t , capacitance C = t2 and
inductance L = 1. The differential equation (5.10) of bicomplex-valued function be-
comes

∂2

∂x2
F (x, t) = t2

∂2

∂t2
F (x, t) + t

∂

∂t
F (x, t). (5.11)

For finding the solution of partial differential equation (5.11), we assume boundary
conditions as

F (0, t) = 0 and F (1, t) = A

(
1

ta
+

1

tb

)
(5.12)
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where A ∈ C2, Re(b − a) > |Imj(b− a)|. By taking the bicomplex Mellin transform
of (5.11) w.r.t. t and making use of Theorem 3.7, we get

d2

dx2
F̄ (x, ξ) = ξ2F̄ (x, ξ). (5.13)

Therefore, by taking the bicomplex Mellin transform of (5.12) and using in solution
of (5.13), we get

F̄ (x, ξ) = A

[
(−2ξ + a+ b)

(
eξx − e−ξx

)
(ξ − a)(ξ − b) (eξ − e−ξ)

]
. (5.14)

By taking the inverse bicomplex Mellin transform (5.14), we get

F (x, t) =
1

2πi1

∫
Ω

t−ξF̄ (x, ξ)dξ (5.15)

where F̄ (x, ξ) is analytic in Re(ξ − a) > |Imj(ξ − a)|. Then taking a semi-circle on
the right-hand side of a large radius and using by residue theorem, we have

F (x, t) = A

[
sinh(ax)

sinh(a)
t−a +

sinh(bx)

sinh(b)
t−b
]

= A1

[
sinh(a1x)

sinh(a1)
t−a1 +

sinh(b1x)

sinh(b1)
t−b1

]
e1

+A2

[
sinh(a2x)

sinh(a2)
t−a2 +

sinh(b2x)

sinh(b2)
t−b2

]
e2

where A = A1e1 +A2e2, a = a1e1 + a2e2 and b = b1e1 + b2e2. Therefore,

F (x, t) ≡ V + i2I

=
1

2

{
A1

[
sinh(a1x)

sinh(a1)
t−a1 +

sinh(b1x)

sinh(b1)
t−b1

]
+A2

[
sinh(a2x)

sinh(a2)
t−a2 +

sinh(b2x)

sinh(b2)
t−b2

]}
+ i2

i1
2

{
A1

[
sinh(a1x)

sinh(a1)
t−a1 +

sinh(b1x)

sinh(b1)
t−b1

]
−A2

[
sinh(a2x)

sinh(a2)
t−a2 +

sinh(b2x)

sinh(b2)
t−b2

]}
. (5.16)

Separating the bi-real and bi-imaginary parts of (5.16), we obtain the voltage and
current of above model as

V (x, t) =
1

2

{
A1

[
sinh(a1x)

sinh(a1)
t−a1 +

sinh(b1x)

sinh(b1)
t−b1

]
+A2

[
sinh(a2x)

sinh(a2)
t−a2 +

sinh(b2x)

sinh(b2)
t−b2

]}
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and

I(x, t) =
i1
2

{
A1

[
sinh(a1x)

sinh(a1)
t−a1 +

sinh(b1x)

sinh(b1)
t−b1

]
−A2

[
sinh(a2x)

sinh(a2)
t−a2 +

sinh(b2x)

sinh(b2)
t−b2

]}
.

6. Conclusion

The concept of bicomplex numbers has been applied for finding the solution of
differential equations of bicomplex-valued function generated by network diagram. In
this paper, we derive Mellin transform and its inverse in bicomplex space which is the
generalization of complex Mellin transform. The application has been illustrated to
find the solution of partial differential equation of bicomplex-valued function gener-
ated by a network. The bicomplex analysis has great advantage that it separates the
voltage and current as complex components.
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Dedicated to the memory of Professor Takayuki Furuta in deep sorrow

Abstract. In this paper, we study several properties of m-complex symmetric
operators. In particular, we prove that if T ∈ L(H) is an m-complex symmetric
operator and N is a nilpotent operator of order n > 2 with TN = NT , then
T+N is a (2n+m−2)-complex symmetric operator. Moreover, we investigate the
decomposability of T +A and TA where T is an m-complex symmetric operator
and A is an algebraic operator. Finally, we provide various spectral relations
of such operators. As some applications of these results, we discuss Weyl type
theorems for such operators.
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Keywords: Conjugation, m-complex symmetric operator, nilpotent perturbations,
decomposable, Weyl type theorems.

1. Introduction

Let L(H) be the algebra of all bounded linear operators on a separable complex
Hilbert space H. A conjugation on H is an antilinear operator C : H → H which
satisfies 〈Cx,Cy〉 = 〈y, x〉 for all x, y ∈ H and C2 = I. For any conjugation C, there
is an orthonormal basis {en}∞n=0 for H such that Cen = en for all n (see [14] for
more details). An operator T ∈ L(H) is said to be complex symmetric if there exists
a conjugation C on H such that T = CT ∗C.
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In 1970, J. W. Helton [18] initiated the study of operators T ∈ L(H) which
satisfy an identity of the following form;

m∑
j=0

(−1)m−j
(
m
j

)
T ∗jTm−j = 0. (1.1)

In the light of complex symmetric operators, using the identity (1.1), we define
m-complex symmetric operators as follows; an operator T ∈ L(H) is said to be an
m-complex symmetric operator if there exists some conjugation C such that

m∑
j=0

(−1)m−j
(
m
j

)
T ∗jCTm−jC = 0

for some positive integer m. In this case, we say that T is an m-complex symmetric
operator with conjugation C. In particular, if m = 1, T is called a 1-complex sym-
metric operator (simply a complex symmetric operator). The authors have studied
spectral properties and local spectral properties of m-complex symmetric operators.
In particular, they have shown that if T is an m-complex symmetric operator with
the conjugation C, then T is decomposable if and only if T ∗ has the property (β) (see

[9]). Set ∆m(T ) :=
∑m

j=0(−1)m−j
(
m
j

)
T ∗jCTm−jC. Then T is an m-complex sym-

metric operator with conjugation C if and only if ∆m(T ) = 0. An operator T ∈ L(H)
is said to be a strict m-complex symmetric operator if T is an m-complex symmetric
operator but it is not an (m− 1)-complex symmetric operator. Note that

T ∗∆m(T )−∆m(T )(CTC) = ∆m+1(T ). (1.2)

Hence, if T is an m-complex symmetric operator with conjugation C, then T is an n-
complex symmetric operator with conjugation C for all n ≥ m. In sequel, it was shown
from [10] that if m is even, then ∆m(T ) is complex symmetric with the conjugation
C, and if m is odd, then ∆m(T ) is skew complex symmetric with the conjugation C.
Moreover, we investigate conditions for (m + 1)-complex symmetric operators to be
m-complex symmetric operators and characterize the spectrum of ∆m(T ). All normal
operators, algebraic operators of order 2, Hankel matrices, finite Toeplitz matrices, all
truncated Toeplitz operators, some Volterra integration operators, nilpotent operators
of order k, and nilpotent perturbations of Hermitian operators are included in the class
of m-complex symmetric operators (see [14], [15], [16], [19], and [9] for more details).
The class of m-complex symmetric operators is surprisingly large class.

Many authors have studied Hermitian, isometric, unitary, and normal operators
perturbed by nilpotent operators (see [2], [6], [8], and [21], etc). In 2014, T. Bermudez,
A. Martinon, V. Muller, and J. Noda ([6]) have been studied the perturbation of m-
isometries by nilpotent operators. In light of m-complex symmetric operators, we
consider the nilpotent perturbations of m-complex symmetric operators. In partic-
ular, we prove that if T ∈ L(H) is an m-complex symmetric operator and N is a
nilpotent operator of order n > 2 with TN = NT , then T + N is a (2n + m − 2)-
complex symmetric operator. Moreover, we investigate the decomposability of T +A
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or TA where T is m-complex symmetric operators. Finally, we provide various spec-
tral relations of such operators. As some applications of these results, we focus on
Weyl type theorems for such operators.

2. Preliminaries

If T ∈ L(H), we write σ(T ), σsu(T ), Γ(T ), σp(T ), σap(T ), σe(T ), σle(T ), σre(T ),
σb(T ), σw(T ), σse(T ), and σes(T ) for the spectrum, the surjective spectrum, the com-
pression spectrum, the point spectrum, the approximate point spectrum, the essential
spectrum, the left essential spectrum, the right essential spectrum, Browder spectrum,
Weyl spectrum, the semi-regular spectrum, and the essentially semi-regular spectrum
of T , respectively.

An operator T ∈ L(H) is said to have the single-valued extension property (or
SVEP) if for every open subset G of C and any H-valued analytic function f on G
such that (T − λ)f(λ) ≡ 0 on G, we have f(λ) ≡ 0 on G. For an operator T ∈ L(H)
and for a vector x ∈ H, the local resolvent set ρT (x) of T at x is defined as the union
of every open subset G of C on which there is an analytic function f : G → H such
that (T−λ)f(λ) ≡ x on G. The local spectrum of T at x is given by σT (x) = C\ρT (x).
We define the local spectral subspace of T ∈ L(H) by HT (F ) = {x ∈ H : σT (x) ⊂ F}
for a subset F of C. An operator T ∈ L(H) is said to have Dunford’s property (C)
if HT (F ) is closed for each closed subset F of C. An operator T ∈ L(H) is said to
have Bishop’s property (β) if for every open subset G of C and every sequence {fn}
of H-valued analytic functions on G such that (T − λ)fn(λ) converges uniformly to
0 in norm on compact subsets of G, we get that fn(λ) converges uniformly to 0 in
norm on compact subsets of G. An operator T ∈ L(H) is said to be decomposable if
for every open cover {U, V } of C there are T -invariant subspaces X and Y such that

H = X + Y, σ(T |X ) ⊂ U, and σ(T |Y) ⊂ V .

It is well-known that

Decomposable ⇒ Bishop’s property (β)
⇒ Dunford’s property (C)⇒ SVEP.

The converse implications do not hold, in general (see [20] for more details).

We say that Weyl’s theorem holds for T ∈ L(H) if

σ(T ) \ σw(T ) = π00(T ),

where π00(T ) = {λ ∈ isoσ(T ) : 0 < dim ker(T − λ) < ∞} and iso∆ denotes the
set of all isolated points of ∆. We say that Browder’s theorem holds for T ∈ L(H) if
σb(T ) = σw(T ). We recall the definitions of some spectra;

σea(T ) := ∩{σa(T +K) : K ∈ K(H)}

is the essential approximate point spectrum, and

σab(T ) := ∩{σa(T +K) : TK = KT and K ∈ K(H)}
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is the Browder essential approximate point spectrum. We put

π00(T ) := {λ ∈ iso σ(T ) : 0 < dim ker(T − λ) <∞}

and

πa
00(T ) := {λ ∈ iso σap(T ) : 0 < dim ker(T − λ) <∞}.

For an operator T ∈ L(H), we say that

(i) a-Browder’s theorem holds for T if σea(T ) = σab(T );

(ii) a-Weyl’s theorem holds for T if σap(T ) \ σea(T ) = πa
00(T );

(iii) T has the property (w) if σap(T ) \ σea(T ) = π00(T ).

It is known that

Property (w) =⇒ a-Browder’s theorem

⇓ ⇑

Weyl’s theorem⇐= a-Weyl’s theorem.

We refer the reader to [1] for more details.

Let Tn = T |ran(Tn) for each nonnegative integer n; in particular, T0 = T . If Tn is
upper semi-Fredholm for some nonnegative integer n, then T is called a upper semi-
B-Fredholm operator. In this case, by [7], Tm is a upper semi-Fredholm operator and
ind(Tm) = ind(Tn) for each m ≥ n. Thus, one can consider the index of T , denoted
by indB(T ), as the index of the semi-Fredholm operator Tn. Similarly, we define lower
semi-B-Fredholm operators. We say that T ∈ L(H) is B-Fredholm if it is both upper
and lower semi-B-Fredholm. In [7], Berkani proved that T ∈ L(H) is B-Fredholm if
and only if T = T1 ⊕ T2 where T1 is Fredholm and T2 is nilpotent. Let SBF−+ (H) be
the class of all upper semi-B-Fredholm operators such that indB(T ) ≤ 0, and let

σSBF−+
(T ) := {λ ∈ C : T − λ 6∈ SBF−+ (H)}.

An operator T ∈ L(H) is called B-Weyl if it is B-Fredholm of index zero. The B-Weyl
spectrum σBW (T ) of T is defined by

σBW (T ) := {λ ∈ C : T − λ is not a B-Weyl operator }.

We say that λ ∈ σap(T ) is a left pole of T if it has finite ascent, i.e., a(T ) < ∞ and

ran(T a(T )+1) is closed where a(T ) = dim ker(T ). The notation p0(T ) (respectively,
pa0(T )) denotes the set of all poles (respectively, left poles) of T , while π0(T ) (respec-
tively, πa

0 (T )) is the set of all eigenvalues of T which is an isolated point in σ(T )
(respectively, σap(T )).
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3. Main Results

In this section, we study several properties of m-complex symmetric operators.
Recall that an operator N ∈ L(H) is said to be nilpotent of order n if Nn = 0 and
Nn−1 6= 0 for some positive integer n. It is well-known from [13, Theorem 5] that
every nilpotent of order 2 is a complex symmetric (or 1-complex symmetric in our
definition) operator. However if T is nilpotent of order n with n > 2, then T may
not be a complex symmetric operator. We first give the following example of (strict)
m-complex symmetric operators.

Example 3.1. Let C be a conjugation given by C(z1, z2, z3) = (z3, z2, z1) on C3. If

N =

0 1 0
0 0 7
0 0 0

 on C3, then N is nilpotent of order 3 and N∗ 6= CNC. Since

N∗2 = CN2C, it follows that

∆3(N) =

3∑
j=0

(−1)3−j
(

3
j

)
N∗jCN3−jC = −3N∗2CNC + 3N∗CN2C

= −3CN3C + 3N∗3 = 0.

Hence N is a strict 3-complex symmetric operator with conjugation C.

On the other hand, let J be a conjugation given by J(z1, z2, z3) = (z1, z2, z3) on
C3. Then N is a 5-complex symmetric operator with conjugation J from [9]. Since
N3 = 0, we have

4∑
j=0

(−1)4−j
(

4
j

)
N∗jJN4−jJ = 6N∗2JN2J =

0 0 0
0 0 0
0 0 294

 6= 0.

Thus N is not a 4-complex symmetric operator. Hence N is a strict 5-complex sym-
metric operator with conjugation J .

In the following theorem, we examine conditions for the operator T +N to be a
(2n+m− 2)-complex symmetric operator.

Theorem 3.2. Let T ∈ L(H) be strict m-complex symmetric with a conjugation C and
let N be nilpotent of order n > 2 with TN = NT. Then T+N is a (2n+m−2)-complex
symmetric operator with conjugation C.

Proof. Let R = T +N and k = 2n+m− 2. Since

[(a+ b)− (c+ d)]k = [{(a− c) + b} − d)]k

=

k∑
i=0

(−1)i
(
k

i

)
[(a− c) + b]k−idi

=

k∑
i=0

k−i∑
j=0

(−1)i
(
k

i

)(
k − i
j

)
bj(a− c)k−i−jdi

=
∑

k1+k2+k3=m

(
k

k1, k2, k3

)
bk3(a− c)k1dk2 ,
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it follows that

∆k(R) =
∑

k1+k2+k3=k

(
k

k1, k2, k3

)
N∗k3∆k1

(T )CNk2C

=

k∑
i=0

k−i∑
j=0

(−1)i
(
k

i

)(
k − i
j

)
N∗j∆k−i−j(T )CN iC. (3.1)

(i) If j ≥ n or i ≥ n, then N∗j = 0 and N i = 0. Hence (3.1) implies that ∆k(R) = 0
due to the fact that Nn = 0.
(ii) If j < n and i < n, then

k − i− j = (2n+m− 2)− i− j
≥ 2n+m− 2− (n− 1)− (n− 1) = m.

Thus ∆k−i−j(T ) = 0 and so ∆k(R) = 0 from (3.1). Hence T +N is a (2n+m− 2)-
complex symmetric operator with conjugation C. �

From Theorem 3.2, we also know that T+N is not necessarily a strict (2n+m−2)-
complex symmetric operator. For example, if T is a complex symmetric operator and
N is nilpotent of order n > 2 with TN = NT , then T = T +N + (−N) is not a strict
(4n− 3)-complex symmetric operator.

Example 3.3. Let N be a nilpotent operator of order n > 2 with N∗ 6= CNC. Then
I + N is an (2n − 1)-complex symmetric operator from Theorem 3.2. In particular,
assume that C is a conjugation given by C(z1, z2, z3) = (z1, z2, z3) on C3. If R =1 1 0

0 1 3
0 0 1

 = I + N where N =

0 1 0
0 0 3
0 0 0

 on C3, then N3 = 0 and N2 6= 0.

Then we have ∆4(R) = ∆4(N) = 6N∗2CN2C 6= 0. Hence R is a strict 5-complex
symmetric operator from the previous note.

Remark 3.4. If we omit “strict” in Theorem 3.2, it is not necessarily that T +N is a
(2n+m− 2)-complex symmetric operator. For example, if T = A⊕ 0 and N = 0⊕Q
where A is an m-complex symmetric operator and Q is a nilpotent operator of order n,
then it is clear that T is an m-complex symmetric operator, N is a nilpotent operator
of order n, and T commutes with N . Hence T+N = A⊕Q is an k-complex symmetric
operator for k = max{m, 2n− 1}.

Recall that an operator T ∈ L(H) is said to be hyponormal if T ∗T ≥ TT ∗. We
next study some properties of ∆m(T ).

Proposition 3.5. Let T be (m+1)-complex symmetric with a conjugation C. If ∆m(T )
is hyponormal, then ker(∆m(T )−λ)∩ ker(∆1(T )−λ) = {0} for any nonzero λ ∈ C.

Proof. If x ∈ ker(∆m(T )−λ)∩ ker(∆1(T )−λ), then ∆m(T )x = ∆1(T )x = λx. Since
ker(∆m(T )− λ) ⊂ ker(∆m(T )− λ)∗, it follows from (1.2) that

0 = 〈∆m+1(T )x, x〉 = 〈[T ∗∆m(T )−∆m(T )CTC]x, x〉
= 〈∆m(T )x, Tx〉 − 〈CTCx,∆m(T )

∗
x〉
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= λ (〈T ∗x, x〉 − 〈CTCx, x〉)
= λ〈∆1(T )x, x〉 = λ2‖x‖2.

Hence we have x = 0. �

Corollary 3.6. Let C be a conjugation operator on H. Suppose that H and K are
Hermitian operators which satisfy HCK = KCH and CSC ≥ S, where S = i(HK −
KH). For an operator T = H+ iK, if T is 2-complex symmetric with the conjugation
C, then ker(∆1(T )− λ) = {0} for any nonzero λ ∈ C.

Proof. If T = H + iK, then

∆1(T ) = T ∗ − CTC = (H − iK)− C(H + iK)C = ∆1(H)− i∆1(K). (3.2)

Since ∆1(H) and ∆1(K) are Hermitian, HCK = KCH, and CSC ≥ S, it follows
from (3.2) that

∆1(T )
∗
∆1(T )−∆1(T )∆1(T )

∗
= 2i[∆1(K)∆1(H)−∆1(H)∆1(K)]
= 2i[−(HK −KH) + (HCK −KCH)C

+C(HCK −KCH)− C(HK −KH)C]
= −2i(HK −KH) + C[2i(HK −KH)C]
= 2(CSC − S) ≥ 0.

Hence, ∆1(T ) is hyponormal and the proof follows by Proposition 3.5. �

Lemma 3.7. Let T be in L(H) and let C be a conjugation on H. If T commutes with
N and CN∗C, then

∆m(T +N) =

m∑
j=0

(
m
j

)
∆j(T ) ·∆m−j(N) (3.3)

where ∆0(T ) = ∆0(N) = I. In particular, if T is complex symmetric with the conju-
gation C, then

∆m(T +N) = ∆m(N) (3.4)

for any m ∈ N.

Proof. Let R = T +N . If T commutes with N and CN∗C, then it holds

T · CN∗jC = CN∗jC · T and N · CT ∗jC = CT ∗jC ·N
for every positive integers j. Then (3.3) obviously holds for m = 1. Suppose that (3.3)
holds for m. Then (1.2) and (3.3) imply

∆m+1(R) = (T ∗ +N∗) ·∆m(R)−∆m(R) · (CTC + CNC)

=

m∑
j=0

(
m
j

)
(T ∗ +N∗) ·∆j(T ) ·∆m−j(N)

−
m∑
j=0

(
m
j

)
∆j(T ) ·∆m−j(N) · (CTC + CNC)

=

m∑
j=0

(
m
j

)(
T ∗ ·∆j(T )−∆j(T ) · CTC

)
∆m−j(N)
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+

m∑
j=0

(
m
j

)
∆j(T )

(
N∗ ·∆m−j(N)−∆m−j(N) · CNC

)
=

m∑
j=0

(
m
j

)
∆j+1(T ) ·∆m−j(N) +

m∑
j=0

(
m
j

)
∆j(T ) ·∆m+1−j(N)

=

m+1∑
j=0

(
m+ 1
j

)
∆j(T ) ·∆m+1−j(N).

Hence (3.3) holds for any positive integer m.
We will show the second statement. Suppose that T is complex symmetric with

the conjugation C. By induction, we prove that ∆m(R) = ∆m(N) for any m ∈ N.
If m = 1, it is obvious. Assume that ∆m−1(R) = ∆m−1(N). Since N and CN∗C
commute with T , it follows that

T ∗∆m−1(N) = T ∗[

m−1∑
j=0

(−1)m−1−j
(
m− 1
j

)
N∗jCNm−1−jC]

= [

m−1∑
j=0

(−1)m−1−j
(
m− 1
j

)
N∗jCNm−1−jC]T ∗ = ∆m−1(N)T ∗.

Moreover, since CTC = T ∗ and T ∗ commutes with ∆m−1(R), we obtain from (1.2)
that

∆m(R) = R∗∆m−1(R)−∆m−1(R)CRC

= (T ∗ +N∗)∆m−1(N)−∆m−1(N)(CTC + CNC)

= (T ∗ +N∗)∆m−1(N)−∆m−1(N)(T ∗ + CNC)

= N∗∆m−1(N)−∆m−1(N)CNC = ∆m(N).

So this completes the proof. �

Proposition 3.8. Let T ∈ L(H) commute with N and CN∗C where C is a conjugation
on H. If T is k-complex symmetric for all k with 0 ≤ k ≤ (2l + k − 2) and N is a
nilpotent of order l, then T + N is (2l + k − 2)-complex symmetric. In particular,
if T is complex symmetric with the conjugation C, then T + N is (2n − 1)-complex
symmetric if and only if N is a nilpotent of order n.

Proof. If T is m-complex symmetric and N is a nilpotent of order n, then ∆m(T ) = 0
and ∆2n−1(N) = 0 from [9]. Thus (3.3) and (1.2) implies ∆2n+m−2(T + N) = 0.
Hence T +N is (2n+m− 2)-complex symmetric. The remaining cases also hold by
a similar method.

For the second statement, if T is complex symmetric, then by (3.4), T + N is
(2n− 1)-complex symmetric if and only if N is a nilpotent of order n. �

We next consider the decomposability of T + A and TA where T is m-complex
symmetric operator and A is an algebraic operator. For any set G ⊂ C, we denote
G∗ = {z : z ∈ G}.
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Theorem 3.9. Let T ∈ L(H) be an m-complex symmetric operator and A be an alge-
braic operator of order k. If R = T + A or R = TA where T commutes with A, then
the following statements are equivalent:
(i) T is decomposable.
(ii) T ∗ has the property (β).
(iii) R is decomposable.
(iv) R∗ has the property (β).

Proof. Since the proof of (i) ⇔ (ii) and (iii) ⇔ (iv) follow from [9, Theorem 4.7], we
only consider the following implication (ii) ⇔ (iv).

(1) In the case R = T + A. Assume that T ∗ has the property (β). Since A
is an algebraic operator of order k, there exists a nonconstant polynomial p(λ) =
(λ − γ1)(λ − γ2)(λ − γ3) · · · (λ − γk) such that p(A) = 0. Set p0(λ) = 1 and pj(λ) =
(λ − γ1)(λ − γ2) · · · (λ − γj) for j = 1, 2, · · · , k . Let G be an open set in C and
fn : G→ H be a sequence of analytic functions such that

lim
n→∞

‖(T ∗ +A∗ − z)fn(z)‖K = 0 (3.5)

for every compact set K in D. Fix any compact subset K of D. Since

(A∗ − γ1)(A∗ − γ2)(A∗ − γ3) · · · (A∗ − γk) = 0,

pk−1(A)∗A∗ = γkpk−1(A)∗. This gives that

lim
n→∞

‖(T ∗ + γk − z)pk−1(A)∗fn(z)‖K
= lim

n→∞
‖pk−1(A)∗(T ∗ +A∗ − z)fn(z)‖K = 0. (3.6)

Moreover, since T ∗ + γk has the property (β), we have

lim
n→∞

‖pk−1(A)∗fn(z)‖K = 0. (3.7)

Equations (3.5) and (3.7) imply that

lim
n→∞

‖(T ∗ + γk−1 − z)pk−2(A)∗fn(z)‖K
= lim

n→∞
‖pk−2(A)∗(T ∗ +A∗ − z)fn(z)‖K = 0.

Since T ∗ + γk−1 has the property (β), we get that limn→∞ ‖pk−2(A)∗fn(z)‖K =
0. Hence, by induction we get that limn→∞ ‖fn(z)‖K = 0. Therefore, R∗ has the
property (β).

(2) In the case R = TA. Assume that T ∗ has the property (β). Let G be an
open set in C and fn : G→ H be a sequence of analytic functions such that

lim
n→∞

‖(R∗ − z)fn(z)‖K = lim
n→∞

‖(T ∗A∗ − z)fn(z)‖K = 0 (3.8)

for every compact set K in D. Thus, it holds that

lim
n→∞

‖(A∗ − γk)T ∗fn(z) + γkT
∗fn(z)− zfn(z)‖K = 0. (3.9)

Since T ∗A∗ = A∗T ∗ and p(A)∗ = 0, we obtain from (3.9) that

lim
n→∞

‖(γkT ∗ − z)pk−1(A)∗fn(z)‖K = 0. (3.10)
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In addition, since γkT
∗ has the property (β), (3.10) implies that

lim
n→∞

‖pk−1(A)∗fn(z)‖K = 0. (3.11)

Then we get from (3.8) that

lim
n→∞

‖(A∗ − γk−1)T ∗fn(z) + γk−1T
∗fn(z)− zfn(z)‖K = 0. (3.12)

Since T ∗A∗ = A∗T ∗ and p(A)∗ = 0, we obtain from (3.12) that

lim
n→∞

‖(γk−1T ∗ − z)pk−2(A)∗fn(z)‖K = 0. (3.13)

Moreover, since γk−1T
∗ has the property (β), (3.13) implies that

lim
n→∞

‖pk−2(A)∗fn(z)‖K = 0. (3.14)

Hence, by induction we get limn→∞ ‖fn(z)‖K = 0, and so R∗ has the property (β).
The converse implication holds by similar arguments above. So this completes the
proof. �

We observe that the order k of A played a role to eliminate A in the proof of
Theorem 3.9. Moreover, we need an m-complex symmetric operator to prove (i) ⇔
(ii)(see [9, Theorem 4.7]).

Corollary 3.10. Let T ∈ L(H) be a complex symmetric operator and A be an algebraic
operator of order k. If R = T + A or R = TA where T commutes with A, then the
following statements are equivalent:
(i) T is decomposable.
(ii) T ∗ has the property (β).
(iii) T has the property (β).
(iv) R is decomposable.
(v) R∗ has the property (β).
(vi) R has the property (β).

Proof. Suppose that T is a complex symmetric operator. Since the implications
(i)⇒(ii) and (i)⇒(iii) hold by [20, Theorems 1.2.29 and 2.2.5], we consider the reverse
implications. If T ∗ has the property (β), then T is decomposable from [9]. If T has the
property (β), then T is decomposable from [19]. Therefore, we have (i)⇔(ii)⇔(iii).
Moreover, we get that (iii)⇔(vi) by a similar method. Hence we get this result from
Theorem 3.9. �

Recall that an operator T ∈ L(H) is called a 2-normal operator if T is unitarily

equivalent to an operator matrix of the form

(
T1 T2
T3 T4

)
∈ L(H ⊕ H) where Ti are

mutually commuting normal operators.

Example 3.11. Let R ∈ L(H ⊕H) be a 2-normal operator. Then R is complex sym-

metric from [16] and R is unitarily equivalent to

(
N1 N2

0 N3

)
. If N1N2 = N2N3, then(

N1 0
0 N3

)
and

(
0 N2

0 0

)
commute and

(
0 N2

0 0

)
is nilpotent of order 2. Moreover,
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since N1
∗⊕N3

∗ has the property (β), it follows that

(
N1 N2

0 N3

)
is decomposable from

Theorem 3.9. Hence R is decomposable.

Let us recall that for an operator T ∈ L(H), a closed subspace M ⊂ H is
invariant for T if TM⊂M, and it is hyperinvariant for T if it is invariant for every
operator in the commutant {T}′ = {S ∈ L(H) : TS = ST} of T . A subspaceM of H
is nontrivial if it is different from {0} and H. As some applications of Theorem 3.9,
we get the following corollary.

Corollary 3.12. Let R = T + A or R = TA be in L(H) where T is an m-complex
symmetric operator and A is an algebriac operator of order k with TA = AT . If T ∗

has the property (β), then the following statements hold:
(i) R and R∗ have the property (β) and the single-valued extension property.
(ii) If σ(R) has nonempty interior, then R has a nontrivial invariant subspace.
(iii) HR(F ) is a hyperinvariant subspace for R.
(iv) If f is any function analytic on a neighborhood of σ(R), then both Weyl’s and
Browder’s theorems hold for f(R) and

σw(f(R)) = σb(f(R)) = f(σw(R)) = f(σb(R)).

Proof. (i) From [20], we know that R is decomposable if and only if R and R∗ have
the property (β). Hence this completes the proof.

(ii) Since T ∗ has the property (β), it follows from Theorem 3.9 that R is de-
composable. Moreover, since R has the property (β) by [20] and σ(R) has nonempty
interior, the proof follows from [12, Theorem 2.1].

(iii) If T ∗ has the property (β), then R is decomposable from Theorem 3.9.
Therefore HR(F ) is a spectral maximal space of R by [11, Proposition 3.8] and [20,
Theorem 1.2.29]. Hence HR(F ) is a hyperinvariant subspace for R.

(iv) Since f(R) is decomposable from [20, p 145], it follows that f(R) is clearly
subscalar. Hence f(R) satisfies Weyl’s theorem from [1, p 175]. Moreover, since f(R)
has the single-valued extension property, Browder’s theorem holds for f(R) and the
last relations are satisfied from [1, Theorem 3.71]. �

Proposition 3.13. Let R = T+N where T ∈ L(H) is an m-complex symmetric operator
with a conjugation C and N is a nilpotent operator of order n with TN = NT . Then
the following arguments hold;
(i) If T ∗ has the single-valued extension property, then R and R∗ has the single-valued
extension property.
(ii) If T has Dunford’s property (C) and σT (x) ⊂ σR(Nn−1x) ∩ σR(x) for all x ∈ H,
then R has Dunford’s property (C).

Proof. (i) Let R = T +N . If T is m-complex symmetric and T ∗ has the single-valued
extension property, then T has the single-valued extension property from [9, Theorem
4.10]. Let G be an open set in C and let f : G→ H be an analytic function such that
(R− z)f(z) ≡ 0 on G, which implies

(T − z)f(z) +Nf(z) = 0. (3.15)
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Since Nn = 0 and TN = NT , it follows that (T − z)Nn−1f(z) = 0. Since T has the
single-valued extension property, we have Nn−1f(z) = 0. Moreover, (3.15) implies
(T − z)Nn−2f(z) = 0. Since T has the single-valued extension property, we get that
Nn−2f(z) = 0. By similar process, we obtain that f(z) = 0. Hence R has the single-
valued extension property. Similarly, we get that R∗ have the single-valued extension
property. Hence R and R∗ have the single-valued extension property.

(ii) Let T have Dunford’s property (C) and σT (x) ⊂ σR(Nn−1x) for all x ∈ H.
Then it suffices to show that σR(Nn−1x) ⊂ σT (x). Indeed, we assume z0 ∈ ρT (x).
Then there is an H-valued analytic function f(z) in a neighborhood D of z0 such that
(T − z)f(z) = x for every z ∈ D. Since TN = NT and Nn = 0, it follows that

(R− z)Nn−1f(z) = (T − z)Nn−1f(z) ≡ Nn−1x on D.

Since Nn−1f(z) is analytic on D, we get z0 ∈ ρR(Nn−1x). Hence σR(Nn−1x) ⊂
σT (x). Thus σT (x) = σR(Nn−1x). Therefore, we have Nn−1HR(F ) = HT (F ). Since
Nn−1HR(F ) ⊂ HR(F ), it follows that HT (F ) ⊂ HR(F ) where F is a closed subset of
C. Moreover, since σT (x) ⊂ σR(x) for all x ∈ H, it follows that HR(F ) ⊂ HT (F ) and
so HR(F ) = HT (F ) is closed for each closed subset F of C. Hence R has Dunford’s
property (C). This completes the proof. �

For an operator T ∈ L(H), the quasinilpotent part of T is defined by

H0(T ) := {x ∈ H : lim
n→∞

‖Tnx‖ 1
n = 0}.

Then H0(T ) is a linear (not necessarily closed) subspace of H. We remark from [3]
that if T has the single-valued extension property, then

H0(T − λ) = {x ∈ H : lim
n→∞

‖(T − λ)nx‖ 1
n = 0} = HT ({λ})

for all λ ∈ C. It is well known from [1] and [3] that if H0(T − λ) = {0} for all λ ∈ C,
then T has the single-valued extension property.

Corollary 3.14. Let R = T+N be in L(H) with the same hypotheses as in Proposition
3.13. If T ∗ has the single-valued extension property, then the following properties hold:
(i) σ(R) = σsu(R) = σap(R) = σse(R).
(ii) σes(R) = σb(R) = σw(R) = σe(R).
(iii) H0(R− λ) = HR({λ}) and HR∗({λ}) = H0(R∗ − λ) for all λ ∈ C.

Proof. Since T ∗ has the single-valued extension property, it follows that R and R∗ have
the single-valued extension property from Proposition 3.13. Hence the proof follows
from [1, Corollaries 2.45 and 3.53], and [3, Theorem 1.5]. �

We next state various spectral relations of m-complex symmetric operators.

Lemma 3.15. If T is an m-complex symmetric operator, then the following relations
hold;
(i) σp(T ) ⊆ σp(T ∗)∗, σap(T ) ⊂ σap(T ∗)∗, Γ(T ∗)∗ ⊆ Γ(T ), σsu(T ∗)∗ ⊆ σsu(T ), and

σ(T ) = σap(T ∗)∗ = σsu(T ).
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(ii) σle(T ) ⊆ σle(T ∗)∗, σre(T ∗)∗ ⊆ σre(T ), and σe(T ) = σre(T ).
(iii) If T ∗ has the single-valued extension property, then

σ(T ) = σap(T ) = σap(T ∗)∗ = σ(T ∗)∗.

Proof. (i) From [9, Theorem 4.1], σp(T ) ⊆ σp(T ∗)∗ and σap(T ) ⊂ σap(T ∗)∗. Since
Γ(S)∗ = σp(S∗) and σsu(S)∗ = σap(S∗) for any S ∈ L(H), Γ(T ∗)∗ ⊆ Γ(T ) and
σsu(T ∗)∗ ⊆ σsu(T ). On the other hand, since T is an m-complex symmetric operator,
it follows from [17, Corollary, page 222] that σ(T ) = σap(T ) ∪ σap(T ∗)∗ ⊆ σap(T ∗)∗.
Since σsu(S)∗ = σap(S∗) for any S ∈ L(H), we get that σ(T ) ⊆ σap(T ∗)∗ = σsu(T ) ⊂
σ(T ). Hence we obtain

σ(T ) = σap(T ∗)∗ = σsu(T ).

(ii) If λ ∈ σle(T ), then there exists a sequence {xn} of unit vectors inH such that
{xn} weakly converges to 0 and limn→∞ ‖(T −λ)xn‖ = 0 for any T ∈ L(H). Then we
have limn→∞(CTC − λ)Cxn = 0. Since T is an m-complex symmetric operator with
conjugation C, it follows that

0 = lim
n→∞

‖

 m∑
j=0

(−1)m−j
(
m

j

)
T ∗jCTm−jC

Cxn‖

= lim
n→∞

‖

 m∑
j=0

(−1)m−j
(
m

j

)
T ∗jλ

m−j

Cxn‖

= lim
n→∞

‖(T ∗ − λ)mCxn‖.

Moreover, since {xn} weakly converges to 0, {Cxn} weakly converges to 0. Hence we
get that σle(T ) ⊆ σle(T ∗)∗. Since σre(S)∗ = σle(S

∗) for any S ∈ L(H), it follows that
σre(T

∗)∗ ⊆ σre(T ). Moreover, since σe(S) = σle(S) ∪ σre(S) for any S ∈ L(H), we
obtain that

σe(T ) = σle(T ) ∪ σre(T ) ⊆ σle(T ∗)∗ ∪ σre(T ) = σre(T ).

Since σre(S) ⊆ σe(S) for any S ∈ L(H), we obtain that σre(T ) = σe(T ).
(iii) If T ∗ has the single-valued extension property, then T has the single-valued

extension property from [9]. Note that σ(S)∗ = σ(S∗) and σsu(S)∗ = σap(S∗) for any
S ∈ L(H). Since T and T ∗ have the single-valued extension property, it follows from
[20] that σ(T )∗ = σ(T ∗) = σsu(T ∗) = σap(T )∗. Moreover, since σap(T ) ⊂ σap(T ∗)∗

by (i), it follows that σ(T ) = σap(T ) ⊆ σap(T ∗)∗ ⊆ σ(T ∗)∗ = σ(T ). Hence we get

σ(T ) = σap(T ) = σap(T ∗)∗ = σ(T ∗)∗.

This completes the proof. �

Proposition 3.16. Let T ∈ L(H) be an m-complex symmetric operator and N be a
nilpotent operator of order n with TN = NT . If R = T + N , then the following
properties hold:
(i) σp(R) ⊂ σp(T ∗)∗ ∪ {0}, Γ(R∗)∗ ⊂ Γ(T ) ∪ {0}, σap(R) ⊆ σap(T ∗)∗ ∪ {0}, and
σap(R) ⊆ σ(T ) ∪ {0}.
(ii) σle(R) ⊂ σle(T ) and σre(R

∗)∗ ⊂ σre(T
∗)∗. In addition, if T ∗ is an m-complex

symmetric operator, then σe(R) ⊆ σe(T ).
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Proof. (i) Assume that R = T + N where T is an m-complex symmetric operator,
Nn = 0, and TN = NT . Since T commutes with N , it follows from Lemma 3.15 and
[20, Page 256] that

σap(R) ⊆ σap(T ) + σap(N) ⊆ σap(T ∗)∗ ∪ {0}.

Hence σap(R) ⊆ σ(T ) ∪ {0} from Lemma 3.15. By the similar method, we get that
σp(R) ⊂ σp(T ∗)∗ ∪ {0}. On the other hand, since Γ(S)∗ = σp(S∗) for any S ∈ L(H)
and the previous result, we conclude that Γ(R∗)∗ ⊂ Γ(T ) ∪ {0}.

(ii) If λ ∈ σle(R), then there exists a sequence {xi} of unit vectors in H such

that {xi} weakly converges to 0 and limi→∞ ‖(R− λ)xi‖ = 0. Put yi = Nn−1xi

‖Nn−1xi‖ for

some n ≥ 1. Since T commutes with N and Nn = 0, it follows that

lim
i→∞

‖(T − λ)yi‖ = lim
i→∞

‖(T − λ)
Nn−1xi
‖Nn−1xi‖

‖

= lim
i→∞

‖Nn−1(T +N − λ)
xi

‖Nn−1xi‖
‖

= lim
i→∞

‖Nn−1(R− λ)
xi

‖Nn−1xi‖
‖ = 0.

In addition, if {xi} weakly converges to 0, then {yi} weakly converges to 0. Therefore
λ ∈ σle(T ). So, σle(R) ⊆ σle(T ). Since σre(S)∗ = σle(S

∗) for any S ∈ L(H), we
obtain σre(R

∗)∗ ⊂ σre(T ∗)∗. If T ∗ is an m-complex symmetric operator, then we get
σle(R

∗) ⊂ σle(T ∗) in a similar way. Thus σe(R) = σle(R)∪σre(R) ⊆ σle(T )∪σre(T ) =
σe(T ). Hence σe(R) ⊆ σe(T ). This completes the proof. �

Finally, we deal with Weyl type theorems for m-complex symmetric operators.

Theorem 3.17. Let T ∈ L(H) be m-complex symmetric. Suppose that T ∗ has the
single-valued extension property. Then the following statements are equivalent:
(i) T ∗ satisfies a-Weyl’s theorem.
(ii) T ∗ satisfies Weyl’s theorem.
(iii) T ∗ has the property (w).
In addition, the following statements are equivalent.
(iv) T ∗ satisfies generalized a-Weyl’s theorem.
(v) T ∗ satisfies generalized Weyl’s theorem.

Proof. (a) Suppose that T ∗ satisfies Weyl’s theorem. Since T is m-complex symmetric,
it follows from Lemma 3.15 that σap(T ∗)∗ = σ(T ) = σ(T ∗)∗ and so σap(T ∗) = σ(T ∗).
On the other hand, since σea(T ∗) ⊂ σw(T ∗) is obvious, it suffices to show σw(T ∗) ⊂
σea(T ∗). Indeed, if λ 6∈ σea(T ∗), then T ∗ − λ is semi-Fredholm and ind(T ∗ − λ) ≤ 0.
Since T ∗ has the single-valued extension property, it follows from [9] and [1] that
T = (T ∗)

∗
has the single-valued extension property and ind(T ∗ − λ) ≥ 0 for every

λ 6∈ σea(T ∗), respectively. Therefore ind(T ∗ − λ) = 0 for every λ 6∈ σea(T ∗). Thus
λ 6∈ σw(T ∗). Hence σea(T ∗) = σw(T ∗). This gives that

πa
00(T ∗) = π00(T ∗) = σ(T ∗) \ σw(T ∗) = σap(T ∗) \ σea(T ∗).

Hence a-Weyl’s theorem holds for T ∗. Similarly, since πa
00(T ∗) = π00(T ∗), we can

show that (i) ⇔ (iii). It is clear that (i) ⇒ (ii). So we have this result.
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(b) By [5, Theorem 3.7], it suffices to prove that (ii) ⇒ (i). Suppose that T ∗

satisfies generalized Weyl’s theorem. Then σBW (T ∗) = σ(T ∗) \ π0(T ∗). Since T is
m-complex symmetric, it follows from Lemma 3.15 that σap(T ∗) = σ(T ∗) and so

σBW (T ∗) = σ(T ∗) \ π0(T ∗) = σap(T ∗) \ πa
0 (T ∗).

Hence it suffices to show that σSBF−+
(T ∗) = σBW (T ∗). If λ 6∈ σSBF−+

(T ∗), then

T ∗ − λ is semi-B-Fredholm and indB(T ∗ − λ) ≤ 0. Since T is m-complex symmetric
operator and T ∗ has the single-valued extension property, it follows from [1] that
indB(T ∗ − λ) ≥ 0 for every λ 6∈ σSBF−+

(T ∗). Thus indB(T ∗ − λ) = 0 for every

λ 6∈ σSBF−+
(T ∗). Therefore σSBF−+

(T ∗) ⊃ σBW (T ∗). Since σSBF−+
(T ∗) ⊂ σBW (T ∗) is

clear, we obtain that

σSBF−+
(T ∗) = σBW (T ∗) = σap(T ∗) \ πa

00(T ∗).

Hence the generalized a-Weyl’s theorem holds for T ∗. �

Corollary 3.18. Let T ∈ L(H) be an m-complex symmetric operator. Then the follow-
ing arguments are equivalent:
(i) T ∗ satisfies Browder’s theorem.
(ii) T ∗ satisfies a-Browder’s theorem.
(iii) T ∗ satisfies the generalized Browder’s theorem.
(iv) T ∗ satisfies the generalized a-Browder’s theorem.

Proof. Since it is well known that (i) ⇔ (iii) and (ii) ⇔ (iv) from [4, Theorem 2.1
and Theorem 2.2], we only consider (iii) ⇔ (iv). Since σ(T ∗) = σap(T ∗) from Lemma
3.15, we have p0(T ∗) = pa0(T ∗). Moreover, σSBF−+

(T ∗) = σBW (T ∗) as in the proof

of Theorem 3.17. Using these results, we get that (iii) ⇔ (iv). This completes the
proof. �
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A study of tube-like surfaces according to type
2 Bishop frame in Euclidean space

Hossam S. Abdel-Aziz

Abstract. The main goal of this paper is the study of the classical differential
geometry of a special kind of tube surfaces, so-called tube-like surface in 3-
dimensional Euclidean space E3. It is generated by sweeping a space curve along
another central space curve. In particular, the type 2 Bishop frame is considered
and some important theorems are obtained for that one. Finally, an application
is presented and plotted using computer aided geometric design.
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1. Introduction

In the study of the differential geometry of submanifolds, it is prevalent to ex-
amine different types of curvature conditions. Accurately, one is excited to determine
all submanifolds satisfying such a condition. A delectable curvature property to study
for a surface Σ : φ = φ(u, v) in an Euclidean space E3 which requires the existence a
functional relationship Γ(k1, k2) = 0 between the principal curvatures is called Wein-
garten surfaces or W−surfaces. With the use of the Gaussian and mean curvatures K
and H respectively, we can redefine W−surfaces, as surfaces satisfying Γ(K,H) = 0,
or, equivalently, the corresponding Jacobian determinant is identically zero, i.e.,

Γ(K,H) =

∣∣∣∣∂(K,H)

∂(u, v)

∣∣∣∣ = 0.

Besides, if φ satisfies a linear equation aK + bH = c, a, b, c ∈ R, (a, b, c) 6= (0, 0, 0),
then it said to be a linear Weingarten surface or LW−surface.

Here, when a = 0, a LW−surface φ becomes a surface with constant mean
curvature. Also, when b = 0, a LW−surface φ will be a surface with constant Gauss-
ian curvature. From this point, the linear Weingarten surfaces represent a natural



250 Hossam S. Abdel-Aziz

generalization of surfaces which have constant mean curvature or constant Gaussian
curvature.

As well known, in the differential geometry of curves, the curves are investigated
by the well know Frenet-Serret equations because they are considered as the path of
a moving particle in the Euclidean space. On the other hand, some researchers aimed
to determine another moving frame for a regular curve. In 1975, Bishop pioneered
“Bishop frame” by means of parallel vector fields. This frame is also called a “parallel”
or “alternative” frame of the curves [4]. The important application of Bishop frame is
that it is used in the area of biology and computer graphics. For example, it may be
possible to compute information about the shape of sequences of DNA using a curve
defined by Bishop frame. Also, it may provide a new way to control virtual cameras
in computer animations [20]. In the present time a good deal of research has been
done using Bishop frames [5, 6, 7, 10, 25]. Because of the importance of this frame,
the authors in [29] introduced a new version of the Bishop frame and called it a type
2 Bishop frame which was studied in [11, 19].

Beside the above some geometries were interested with the study of Weingarten
surfaces. For example in [27, 28], the Weingarten surfaces in Euclidean space were
introduced by J. Weingarten in the context of the problem of finding all surfaces
isometric to a given surface of revolution. Further, applications of these surfaces on
computer aided design and shape investigation can be presented in [26]. Also, in
the three dimensional Euclidean space, Munteanu and Nistor [17] and Lopez [14, 15]
studied polynomial translation and cyclic linear Weingarten surfaces, respectively.
In addition, Ro and Yoon [21] studied a tube of Weingarten types satisfying some
equation in terms of the Gaussian curvature, mean curvature and second Gaussian
curvature. Kim and Yoon [13] classified quadric surfaces in Euclidean 3-space in terms
of the Gaussian curvature and the mean curvature while Yoon and Jun [31] classi-
fied non-degenerate quadric surfaces in Euclidean 3-space in terms of the isometric
immersion and the Gauss map. Recently, in [23], the author was studied Weingarten
tube-like surfaces in Euclidean 3-space. In a Minkowski 3-space E3

1, a classification of
these surfaces is given in [1, 2, 8, 12, 16, 24].

This paper is devoted to use the new version of type 2 Bishop frame which was
given in [29] to introduce a study for parametrization of a tube-like surface satisfying
the Jacobi condition in Euclidean 3-space E3. Moreover, for A,Q ∈ {K,H,KII}, we
discuss the (A,Q)-Weingarten and linear Weingarten for that one. Thus, the geom-
etry of such surface in terms of its intrinsic geometric formulas is established. An
application of this surface is considered and plotted.

2. Geometric preliminaries

Let E3 be a Euclidean 3-space with the scalar product given by

g = dx21 + dx22 + dx23,

where (x1, x2, x3) is a standard rectangular coordinate system of E3. In particular,

the norm of a vector U ∈ E3 is given by ‖U‖ =
√
〈u, u〉. If u = (u1, u2, u3) and
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v = (v1, v2, v3) are arbitrary vectors in E3, we define the vector product of u and v
as the following

u ∧ v = (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1) . (2.1)

Let α = α(t) : I → E3 be a space curve in E3. Denote by {e(t), p(t), q(t)} the moving
Frenet frame along the curve α, then the Frenet formulas are given by [22]

∂

∂t

 e(t)
p(t)
q(t)

 =

 0 κ(t) 0
−κ(t) 0 τ(t)

0 −τ(t) 0

 e(t)
p(t)
q(t)

 , (2.2)

where e = α′(t)
‖α′(t)‖ , p = e′(t)

‖e′(t)‖ and q = e(t)∧p(t) are the tangent, the principal normal

and the binormal vector fields of the curve α, respectively. The functions κ and τ are
called curvature and torsion of α, respectively. The prime´denotes the differentiation
with respect to the t−parameter.

The type 2 Bishop formulas of α are defined by

∂

∂t

 N1(t)
N2(t)
q(t)

 =

 0 0 −κ1(t)
0 0 −κ2(t)

κ1(t) κ2(t) 0

 N1(t)
N2(t)
q(t)

 . (2.3)

For this frame, the vectors N1, N2 and q are the tangent, the principal normal, and
the binormal vector fields of the curve α.

Here, the type 2 Bishop curvatures are defined by

κ1(t) = −τ cos θ(t), (2.4)

κ2(t) = −τ sin θ(t). (2.5)

It can be also shown that

θ′ = κ =
f ′

1 + (f)2
, f =

κ2
κ1
.

We shall call the set {N1, N2, q, κ1, κ2} as type 2 Bishop invariants of the curve α =
α(t).

The Bishop frame or parallel transport frame is an alternative to the Frenet
frame. Thus, the matrix relation between type 2 Bishop and Frenet-Serret frames can
be expressed as  e(t)

p(t)
q(t)

 =

 sin θ(t) − cos θ(t) 0
cos θ(t) sin θ(t) 0

0 0 1

 N1(t)
N2(t)
q(t)

 .
We denote a surface M in E3 by

φ = φ(s, t).

Let ζ be the standard unit normal vector field on the surface M defined by

ζ =
φs ∧ φt
‖φs ∧ φt‖

, φs =
∂φ

∂s
, φt =

∂φ

∂t
. (2.6)
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Thus, we have the metric gij and the coefficients of the second fundamental form
hij , i, j = 1, 2

g11 = 〈φs, φs〉, g12 = 〈φs, φt〉, g22 = 〈φt, φt〉. (2.7)

h11 = 〈φss, ζ〉, h12 = 〈φst, ζ〉, h22 = 〈φtt, ζ〉, (2.8)

where 〈, 〉 is the Euclidean inner product.

Under this parametrization of the surface M , the Gaussian curvature K and the
mean curvature H have the following forms [18]

K =
Det (hij)

Det (gij)
, (2.9)

H =
1

2
tr(gijhjk), (2.10)

where (gkl) is the associated contravariant metric tensor field of the covariant metric
tensor field (gkl); that is, gikgjk = δij .

A surface M in a three-dimensional Euclidean space E3 with positive Gaussian
curvature K possesses a positive definite second fundamental form II if appropriately
orientated. Therefore, the second fundamental form defines a new Riemannian metric
on M . In turn, we can consider the Gaussian curvature KII of the second fundamental
form which is regarded as a Riemannian metric. If a surface has non-zero Gaussian
curvature everywhere, KII can be defined formally and it is the curvature of the
Riemannian manifold (M, II).

Definition 2.1. Given a surface M in the three- dimensional Euclidean space E3, the
second Gaussian curvature is defined by [3]

KII =
1

(h11h22 − h212)
2 (2.11)

×



∣∣∣∣∣∣
− 1

2 (h11)vv + (h12)uv − 1
2 (h22)uu

1
2 (h11)u (h12)u − 1

2 (h11)v
(h12)v − 1

2 (h22)u h11 h12
1
2 (h22)v h12 h22

∣∣∣∣∣∣
−

∣∣∣∣∣∣
0 1

2 (h11)v
1
2 (h22)u

1
2 (h11)v h11 h12
1
2 (h22)u h12 h22

∣∣∣∣∣∣


Now, to serve our study it is important to consider the following definition:

Definition 2.2. [30] (1) A regular surface is flat (developable) if and only if its Gaussian
curvature is identically zero.

(2) A regular surface for which the mean curvature vanishes identically is minimal
surface.

(3) A non -developable surface is said to be II-flat if the second Gaussian cur-
vature is equal to zero.

(4) A non- developable surface is called II -minimal if the second mean curvature
is vanished.
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3. Tube-like surface with type 2 Bishop frame in E3

In this section, we study a special case of surfaces in 3 dimensions, i.e., a tube-
like surface that is generated by sweeping a space curve along another central space
curve.

The tube-like surface can be obtained from the tube surface which is a special
kind of the canal surface.

A canal surface is the envelope of a moving sphere with varying radius defined
by the trajectory α(t) (center curve) of its center and a radius function r(t). If the
radius function r(t) is a constant, then the canal surface is called a tube [9].

For a sufficiently small parameter r > 0 and by α(t) as a center curve with
nonzero curvature, the tube-like surface of radius r with type 2 Bishop formulas (2.3)
can be written as

φ(s, t) = α(t) + r[cos s N2(t)− sin s q(t)], (3.1)

where in general r can be a function of t. For fixed t, when s runs from 0 to 2π,
we have a circle around the point α(t) in the N2B plane. As we change t, this circle
moves along the space curve α, and we will generate a tube-like surface along α.

Then, the two tangent vectors and the unit normal vector to the surface are
given by  φs = −r[sin s N2 + cos s q],

φt = ΩN1 − rκ2[sin s N2 + cos s q],
ζ = − cos s N2 + sin s q, Ω = 1− rκ1 sin s,

(3.2)

respectively. From (2.2) and (2.7) it is easily checked that the coefficients of the first
fundamental form g11, g12 and g22 of φ are given by

g11 = r2, g12 = r2κ2, g22 = Ω2 + r2κ22,

From this, we have

g = r2(Ω2 + r2κ22)− (r2κ2)2. (3.3)

This leads to the coefficients of the second fundamental form h11, h12 and h22 of φ
given by

h11 = r, h12 = rκ2, h22 = rκ22 − κ1 sin s+ rκ21 sin2 s.

It follows that

h = r(rκ22 − κ1 sin s+ rκ21 sin2 s)− (rκ2)2. (3.4)

Besides, the Gaussian curvature K and the mean curvature H of (3.1) are respectively,
given by

K = −κ1 cos s

Ωr
, (3.5)

H =
1− 2rκ1 cos s

2Ωr
. (3.6)

If the second fundamental form of φ is non-degenerate, i.e., h11h22− (h12)2 6= 0, then
the second Gaussian curvature KII on φ(s, t) can be obtained

KII =
1

4Ω4r sin2 s
[1 + sin2 s− 6rκ1 sin3 s+ 4r2κ21 sin4 s]. (3.7)
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3.1. Tube-like surface of W- type

In the following, we study the tube-like surface φ in E3 satisfying the Jacobi
equation Γ(X,Y ) = 0, X 6= Y , of the curvatures K, H and KII of φ and we formulate
the main results in the next theorems.

Theorem 3.1. Let M be a tube-like surface in E3 defined by Eq. (3.1), then M is a
(K,H) W−surface.

Proof. Let M be a tube-like surface in E3. Differentiating K and H with respect to
s and t respectively, then we obtain

Ks = −κ1 cos s

rΩ2
, Kt = −κ

′
1 sin s

rΩ2
, (3.8)

Hs = −κ1 cos s

2Ω2
, Ht = −κ

′
1 sin s

2Ω2
. (3.9)

By using (3.8) and (3.9), M satisfies identically the Jacobi equation

φ(K,H) = KsHt −KtHs = 0.

Therefore M is a W−surface.

Theorem 3.2. Let M be a tube-like surface parameterized by (3.1) with non-degenerate
second fundamental form in the Euclidean 3-space E3. If M is a (K,KII) W−surface,
then κ′1 = 0, i.e., the curvature of α(t) is a non-zero constant.

Proof. Let M be a tube-like surface in E3 parameterized by (3.1). If we take derivative
of KII given by (3.7) with respect to s and t respectively, and using Eq. (3.8) then
we have

(KII)s =
−1

2rΩ3 sin3 s
[1− rκ1(2 cos2 s+ rκ1 sin3 s) sin s] cos s, (3.10)

(KII)t =
κ′1

2Ω3 sin s
[cos2 s− sin2 s+ rκ1 sin3 s]. (3.11)

We consider the tube-like surface (3.1) in E3 satisfying the Jacobi equation

φ(K,KII) = Ks(KII)t −Kt(KII)s = 0, (3.12)

with respect to the Gaussian curvature K and the second Gaussian curvature KII .
Then, substituting from (3.10) and (3.11) into (3.12), we get

κ′1 cos s = 0.

Since this polynomial is equal to zero for every s, its coefficient must be zero. There-
fore, we conclude that κ′1 = 0.

Theorem 3.3. Let M be a tube-like surface parameterized by (3.1) with non-degenerate
second fundamental form in the Euclidean 3-space E3. If M is a (H,KII) W−surface,
then κ′1 = 0. This means that the curvature of α(t) is a non-zero constant.
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Proof. We assume that the tube-like surface given by (3.1) with non-degenerate sec-
ond fundamental form in E3 is a (H,KII) W−surface. Then, it satisfies the Jacobi
equation

φ(H,KII) = Hs(KII)t −Ht(KII)s = 0. (3.13)

Equations (3.9), (3.10), (3.11) and (3.13) lead to

κ′1 cos s = 0. (3.14)

From (3.14), one can get κ′1 = 0. Thus, the curvature of α(t) is a non-zero constant.

4. Tube-like surface of LW- type

Now, to examine the linear Weingarten property of the tube-like surface φ defined
along the space curve α(t). Let us analyze the following theorems.

Theorem 4.1. Suppose that the tube-like surface defined by (3.1) in E3 is a
LW−surface satisfying aK + bH = c, then κ1 = 0 and M is an open part of a
circular-like cylinder.

Proof. Consider the parametrization (3.1) with K and H given by (3.5) and (3.6)
respectively, then the relation

aK + bH = c,

implies
2κ1(a+ br − cr2) sin s− b+ 2cr = 0. (4.1)

Since sin s and 1 are linearly independent, we have

2κ1(a+ br − cr2) = 0, b = 2cr.

This leads to
κ1(a+ cr2) = 0.

If a+ cr2 6= 0, then κ1 = 0. Thus, M is an open part of a circular-like cylinder.

Theorem 4.2. Let (A,Q) ∈ {(K,KII), (H,KII)}, then there are no (A,Q) LW−tube-
like surfaces in Euclidean 3-space E3.

Proof. Firstly, we suppose that the tube-like surface (3.1) with non-degenerate second
fundamental form in E3. satisfies the equation

aK + bKII = c. (4.2)

By the aid of (3.5) and (3.7), the equation (4.2) takes the form

−1

4rΩ2 sin2 s
[−4rκ21(a+ br − cr2) sin4 s

+2κ1(2a+ 3br − 4cr2) sin3 s− (b− 4cr) sin2 s− b] = 0.

Since the identity holds for every s, all the coefficients must be zero. Therefore, we
obtain

4rκ21(a+ br − cr2) = 0,

2κ1(2a+ 3br − 4cr2) = 0,

(b− 4cr) = 0, b = 0.
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Thus, we get b = 0, c = 0 and κ1 = 0. In this case, the second fundamental form of
M is degenerate.

Secondly, let the tube-like surface (3.1) with non-degenerate second fundamental
form in E3 satisfy the relation

aH + bKII = c. (4.3)

From Equations (3.6), (3.7) and (4.3), we get

−1

4rΩ2 sin2 s
[−4r2κ21(a+ b− cr) sin4 s

+2rκ1(3a+ 3b− 4cr) sin3 s

−(2a+ b− 4cr) sin2 s− b] = 0.

Based on the above, one can obtain b = 0, c = 0 and κ1 = 0. It indicates that the
second fundamental form of the tube-like surface is degenerate. Then, there are no
(H,KII)-linear Weingarten tube-like surfaces in E3.

5. Application

Now, as an application of our main results, we give the following example

Example 5.1. Consider the surface given by

φ(s, t) = α(t) + r(cos s N2(t)− sin s q(t)), (5.1)

where α(t) is given by

α(t) = (cos t, sin t, t). (5.2)

The Bishop frame {N1(t), N2(t), q(t)} of the curve α is expressed as
N1(t) = 1√

2
(− sin t, cos t, 1),

N2(t) = −(cos t, sin t, 0),
q(t) = 1√

2
(sin t,− cos t, 1)

(5.3)

Thus, the parametric form of the tube-like surface φ(s, t) can be written as

φ(s, t) = (λ1(s, t), λ2(s, t), λ3(s, t)), (5.4)

where 
λ1 = ((1− r cos s) cos t− 1√

2
r sin s sin t),

λ2 = ((1− r cos s) sin t+ 1√
2
r sin s cos t),

λ3 = (t− 1√
2
r sin s).

(5.5)

For this parametrization surface, the components of the first fundamental form are
given by {

g11 = r2, g12 = −1
2 r

2 sin θ(t),
g22 = 1

4 [(2 + r sin s cos θ(t))2 + r2 sin2 θ(t)].
(5.6)

The unit normal vector of φ is obtained from (2.6) as

ζ = cos s N2(t)− sin s q(t). (5.7)
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Then the second fundamental form components of φ are as follows:{
h11 = −r, h12 = 1

2r sin θ(t),
h22 = 1

4 (−2 sin s cos θ(t)− r(sin2 s+ cos2 sin2 θ(t)).
(5.8)

In addition, the Gaussian curvature K and the mean curvature H of φ are respectively,
given by

K =
sin s cos θ(t)

2r + r2 sin s cos θ(t)
, (5.9)

H =
−1

r
+

1

r(2 + r sin s cos θ(t))
. (5.10)

Since h11h22−h212 6= 0, then we can get the second Gaussian curvature KII on φ(s, t)
as follows:

KII = −cos2 s + 2 sin2 s + 3r sin3 s cos θ(t) + r2 sin4 s cos θ(t)

r(2 + r sin s cos θ(t))2 sin2 s
. (5.11)

From aforementiomed data, one can deduce that when sin s = 0, then from (5.9) and
(5.10), we get K = 0 and H = −1

2r = const., respectively.

Therefore, in the three dimensional Euclidean space E3, equations (5.9)-(5.11)
show that:

The surface (5.4) is a (K,H) W−surface (Theorem 3.1.).
Besides, it is (K,KII) and (H,KII) W−surface (Theorems 3.2 and 3.3).
Moreover, it is an open part of a circular-like cylinder (Theorem 4.1).
In addition, there are no tube-like surfaces of types (K,KII) and (H,KII)

LW−surface (Theorem 4.2).
We can easily see the graph of some tube-like surfaces generated by circular helix

in Figures 1, 2, 3.

Figure 1. Tube-like surface

generated by circular helix
with s ∈ [0, 1.1π], t ∈ [0, 1.2π]

Figure 2. Tube-like surface

generated by circular helix
with s ∈ [0, 1.2π], t ∈ [0, 1.7π]

Figure 3. Tube-like surface

generated by circular helix
with s ∈ [0, 2π], t ∈ [0, 2π]
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6. Conclusion

In this paper, we proposed a definition of a tube-like surface in the three-
dimensional Euclidean space E3. It is generated by sweeping a space curve along
another central space curve. We investigated the meant surface on satisfying some
equations in terms of the Gaussian curvature K, the mean curvature H and the sec-
ond Gaussian curvatures KII using a new version of Bishop frame. As an application
to demonstrate our theoretical results, we have given an example.
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[20] Petrović, M., Verstraelen, J., Verstraelen, L., Principal normal spectral variations of
space curves, Proyecciones, 19(2000), no. 2, 141-155.

[21] Ro, J., Yoon, D.W., Tubes of Weingarten types in a Euclidean 3-space, J. Chungcheong
Math. Soc., 22(2009), no. 3, 359-366.

[22] Shifrin, T., Differential geometry: A first course in curves and surfaces, Preliminary
Version, Springer, 2015.

[23] Souror, A.H., Weingarten tube-like surfaces in Euclidean 3-space, Stud. Univ. Babeş-
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Abstract. In this paper, we deal with a certain factorable surface in the isotropic
3-space satisfying aK+bH = c, where K is the relative curvature, H the isotropic
mean curvature and a, b, c ∈ R. We obtain a complete classification for such
surfaces. As a further study, we prove that a certain graph surface with K = H2

is either a non-isotropic plane or a parabolic sphere.
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1. Introduction

Let M2 be a regular surface of a Euclidean 3-space R3 and κ1, κ2 its princi-
pal curvatures. Then M2 is called a Weingarten surface if the following non-trivial
functional relation occurs:

φ (κ1, κ2) = 0 (1.1)

for a smooth function φ of two variables. (1.1) immediately yields

δ (K,H) = 0, (1.2)

where K and H are respectively the Gaussian and mean curvatures of M2. (1.2)
is equivalent to the vanishing of the corresponding Jacobian determinant, i.e.
|∂ (K,H) /∂ (u, v)| = 0 for a coordinate pair (u, v) on M2. If M2 is a surface that
satisfies

aH + bK = c, a, b, c ∈ R, (a, b, c) 6= (0, 0, 0) , (1.3)

then it is called a linear Weingarten surface (LW-surface). If a = 0 or b = 0 in (1.3) ,
then the LW-surfaces reduce to the surfaces with constant curvature. Such surfaces
have been extensively studied, see [7, 8], [13]-[17], [30].

On the other hand, a surface in R3 that is the graph of the function z (x, y) =
f (x) g (y) is said to be factorable or homothetical. In various ambient spaces, these
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surfaces have been desribed in terms of their curvatures and Laplace operator in
[4, 9, 10, 12, 18, 19, 28, 29]. As distinct from the Euclidean case, a graph surface
in the isotropic space I3 is said to be factorable if it is graph of either z (x, y) =
f (x) g (y) or x (y, z) = f (y) g (z). We call them the factorable surface of type 1 and
type 2, respectively. Note that the factorable surface of one type cannot be carried
into that of another type by the isometries of I3. These surfaces of both type in I3
with K,H = const. were obtained in [1]-[3].

The main purpose of this paper is to obtain LW-factorable surfaces of type 1 in
I3. As a further study, we classify the graph surfaces of the function z = z(x, y) in I3
with K = H2.

2. Preliminaries

For general references of the isotropic geometry, see [5], [23]-[27]. The isotropic 3-
space I3 is a Cayley-Klein space defined from a 3-dimensional projective space P

(
R3
)

with the absolute figure (ω, f1, f2), where ω is a plane in P
(
R3
)

and f1, f2 are two

complex-conjugate straight lines in ω. The homogeneous coordinates in P
(
R3
)

are
introduced in such a way that the absolute plane ω is given by X0 = 0 and the absolute
lines f1, f2 by X0 = X1 + iX2 = 0, X0 = X1 − iX2 = 0. The intersection point
F (0 : 0 : 0 : 1) of these two lines is called the absolute point. The affine coordinates

in P
(
R3
)

are given by x1 =
X1

X0
, x2 =

X2

X0
, x3 =

X3

X0
. The group of motions of I3 is

defined by

(x1, x2, x3) 7−→ (x′1, x
′
2, x
′
3) :

 x′1 = a1 + x1 cosφ− x2 sinφ,
x′2 = a2 + x1 sinφ+ x2 cosφ,
x′3 = a3 + a4x1 + a5x2 + x3,

where a1, ..., a5, φ ∈ R.
Consider the points x = (x1, x2, x3) and y = (y1, y2, y3) . The isotropic distance

dI (x, y) of two points x and y is defined as

dI (x, y) = (y1 − x1)
2

+ (y2 − x2)
2
.

The lines in x3−direction are called isotropic lines. The plane containing an isotropic
line is called an isotropic plane. Other planes are non-isotropic.

Let M2 be a graph surface immersed in I3 corresponding to a real-valued smooth
function z = z (x, y) on an open domain D ⊆ R2. Then it is parameterized as follows:

r : D ⊆ R2 −→ I3, (x, y) 7−→ (x, y, z (x, y)) . (2.1)

It follows from (2.1) that M2 is an admissible (i.e. without isotropic tangent planes).
The metric on M2 induced from I3 is given by g∗ = dx2 + dy2. This implies that
M2 is always flat with respect to the induced metric g∗ and thus its Laplacian is of

the form 4 =
∂2

∂x2
+

∂2

∂y2
. The relative (or isotropic Gaussian) curvature K and the

isotropic mean curvature H of M2 are defined by

K = zxxzyy − (zxy)
2

(2.2)
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and

H =
4z
2

=
zxx + zyy

2
. (2.3)

M2 is called isotropic minimal (resp. isotropic flat) if H (resp. K) vanishes.

3. LW-factorable surfaces of type 1

Let M2 be a factorable surface of type 1 in I3, i.e., the graph of
z (x, y) = f (x) g (y) . By (2.2) and (2.3) , we get

K = (f ′′f) (g′′g)− (f ′)
2

(g′)
2

(3.1)

and

2H = f ′′g + fg′′, (3.2)

where f ′ = df
dx and g′ = dg

dy , etc. We mainly aim to classify the LW-factorable surfaces

of type 1 in I3. For this, let M2 satisfy the relation (1.3). Since at least one of a, b and
c is nonzero in (1.3), without loss of generality, we may assume b 6= 0. By dividing
both sides of (1.3) with b and putting a

b = 2m0 and c
b = n0, we write

2m0H +K = n0, m0, n0 ∈ R. (3.3)

If m0 = 0 , M2 turns to be a factorable surface of type 1 in I3 with K = const.
however such surfaces were already provided in [1]. In our framework, it is meaningful
to take m0 6= 0. By (3.1)− (3.3) , we get

(f ′′f) (g′′g)− (f ′)
2

(g′)
2

+m0 (f ′′g + fg′′) = n0. (3.4)

We have to distinguish several cases in order to solve (3.4) . Remark that the roles of
f and g are symmetric, so discussing on the cases based on f shall be sufficient. From
now on, we use the notation ci to denote nonzero constants and di to denote some
constants, i = 1, 2, 3, ...

Case 1. f (x) = f0 ∈ R− {0} . By (3.4), we find

g (y) =
n0

2f0m0
y2 + d1y + d2. (3.5)

Thereby, M2 is isotropic flat factorable surface of type 1 with H = n0

2m0
.

Case 2. f is a linear function, i.e. f (x) = c1x+ d3. It follows from (3.4) that

m0d3g
′′ − c21 (g′)

2
+ (m0c1g

′′)x = n0. (3.6)

(3.6) implies that g′′ = 0, namely g (y) = c2y + d4. In this case, M2 is isotropic

minimal factorable surface of type 1 with K = − (c1c2)
2
.

Case 3. f is a non-linear function. From the symmetry, g is also a non-linear function.
By dividing (3.4) with the product ff ′′, we get

g′′g − (f ′)
2

ff ′′
(g′)

2
+m0

g

f
+m0

g′′

f ′′
=

n0
ff ′′

. (3.7)
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By taking partial derivative (3.7) with respect to y and then dividing with g′g′′, we
deduce

1 +
gg′′′

g′g′′
− 2

(f ′)
2

ff ′′
+

(
m0

f

)
1

g′′
+

(
m0

f ′′

)
g′′′

g′g′′
= 0. (3.8)

We have two cases:
Case 3.1. g′′′ = 0, i.e.

g (y) = c3y
2 + d5y + d6. (3.9)

Up to suitable translations of y, we may assume d5 = d6 = 0. Then (3.8) reduces to

1− 2
(f ′)

2

ff ′′
+

(
m0

2c3

)
1

f
= 0. (3.10)

(3.10) can be rewritten as (
m0

2c3
+ f

)
f ′′ − 2 (f ′)

2
= 0. (3.11)

After solving (3.11) , we find

f (x) = −
(

1

c4x+ d7
+
m0

2c3

)
. (3.12)

Considering (3.9) and (3.12) into (3.4) gives the contradiction

x = − 1

c4

(
2m0c3
n0 +m2

0

+ d7

)
due to the fact that x is an independent variable.
Case 3.2. g′′′ 6= 0. By taking partial derivatives of (3.8) with respect to x and y, we
conclude (

f ′

f2

)
g′′′

(g′′)
2 −

f ′′′

(f ′′)
2

(
g′′′

g′g′′

)′
= 0. (3.13)

Due to f ′g′′′ 6= 0, neither f ′′′ nor

(
g′′′

g′g′′

)′
can vanish in (3.13). Then (3.13) can be

rewritten as
f ′ (f ′′)

2

f2f ′′′
=

(g′′)
2

g′′′

(
g′′′

g′g′′

)′
. (3.14)

Since the left side of (3.14) is a function of x, however the right side is a function of
y. Then both sides have to be equal a nonzero constant, namely

f ′ (f ′′)
2

f2f ′′′
= c5 =

(g′′)
2

g′′′

(
g′′′

g′g′′

)′
. (3.15)

From the left side of (3.15) , we write

f ′′′

(f ′′)
2 =

1

c5

f ′

f2
(3.16)

or, by taking once integral with respect to x,

f ′′ =
c5f

c5d8f + 1
. (3.17)
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Likewise, by the right side of (3.15), we deduce

g′′′

g′g′′
=
−c5
g′′

+ d9. (3.18)

Substituting (3.17) and (3.18) into (3.8) yields

1 + (m0d8 + g) d9 −
c5 (m0d8 + g)

g′′
+
m0d9
c5f

−

−2 (c5d8f + 1) (f ′)
2

c5f2
= 0.

(3.19)

Taking partial derivative of (3.19) with respect to y and considering (3.18) leads to

g′′ = −c5 (g +m0d8) . (3.20)

After substituting (3.20) into (3.19), we conclude

2 +m0d8d9 + d9g +
m0d9
c5f

− 2 (f ′)
2

ff ′′
= 0,

which yields d9 = 0 and ff ′′ = (f ′)
2
. Solving this one gives f (x) = c6 exp (c7x) . By

putting this in (3.4) we derive the polynomial equation on (f):

c27

[
gg′′ − (g′)

2
]
f2 +m0

(
c27g + g′′

)
f − n0 = 0,

which implies that the coefficients must be zero; namely n0 = 0,

gg′′ − (g′)
2

= 0 and c27g + g′′ = 0. (3.21)

(3.21) leads to the contradiction c27g
2 + (g′)

2
= 0 and therefore we have proved the

following:

Theorem 3.1. Let M2 be a LW-factorable surface of type 1 which is the graph of
z (x, y) = f (x) g (y) in I3. Then we have either

(A) f (x) = f0 ∈ R− {0} , g (y) = c6y
2 + d10y + d11;

(B) or z (x, y) = (c7x+ d12) (c8y + d13) .

4. Graph surfaces with K = H2

Let M2 be a surface of the Euclidean 3-space R3. The Euler inequality for M2

including the Gaussian and mean curvature follows

K ≤ H2. (4.1)

The equality sign of (4.1) holds on M2 if and only if it is totally umbilical, i.e. a part
of a plane or a two sphere in E3. For more generalizations, see [6, 11], [20]-[22]. Now
we are interested in the factorable surfaces of type 1 in I3 satisfying K = H2. For
this, let us reconsider (3.1) and (3.2). If K = H2, then

(f ′′g − fg′′)2 + 4 (f ′g′)
2

= 0. (4.2)

(4.2) immediately implies that

f ′′g − fg′′ = 0 and f ′g′ = 0. (4.3)
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By (4.3) we conclude that either f = const. and g (y) = c1y + d1 or g = const. and
f (x) = c2x+ d2, which yields the following result:

Proposition 4.1. The factorable surfaces of type 1 in I3 satisfying K = H2 are only
non-isotropic planes.

As a generalization, we are able to investigate the graph surfaces of type 1 in I3
satisfying K = H2. More precisely, let M2 be a graph surface of z = z (x, y) in I3. If
K = H2 on M2, then we get

(zxx − zyy)
2

+ 4 (zxy)
2

= 0, (4.4)

which yields that

zxy = 0 (4.5)

and

zxx = zyy. (4.6)

By (4.5) , we derive

z (x, y) = α (x) + β (y) (4.7)

and considering (4.7) into (4.6) gives

d2α

dx2
=
d2β

dy2
= d3, d3 ∈ R. (4.8)

By solving (4.8) , we find

α (x) =
d3
2
x2 + d4x+ d5, β (y) =

d3
2
y2 + d6y + d7. (4.9)

(4.9) implies that M2 is either a non-isotropic plane (d3 = 0) or a parabolic sphere
(d3 6= 0). Consequently, we have

Theorem 4.2. A graph surface of a function z = z (x, y) in I3 with K = H2 is either
(a piece of) a non-isotropic plane or (a piece of) a parabolic sphere given by

z (x, y) = c3
(
x2 + y2

)
+ d8x+ d9y + d10.
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Book reviews

Keith Devlin; Finding Fibonacci. The quest to rediscover the forgotten mathematical
genius who changed the world.
Princeton University Press, Princeton NJ, 2017, vi+241 p., ISBN: 978-0-691-17486-
0/hbk; 978-1-4008-8553-4/ebook

Keith Devlin is a professional mathematician and a successful popular science
writer with 35 published books, both academic and for the general public as well,
commentator to a weekly emission of the National Public Radio (USA), known as
“the Math Guy”. In 2002, intrigued by the scarcity of known facts about the dis-
tinguished Italian mathematician of the Middle Ages, Leonardo da Pisa (or Pisano),
known also as Fibonacci (cca. 1175-1250), the author embarked on a quest to fill in
this gap. After several visits in Italy, consultations with some Italian mathematicians
and historians and manuscript hunting over several Italian archives, the conclusions
were published in two books: The Man of Numbers: Fibonacci’s Arithmetic Revolu-
tion, Walker Books (2011), 192 pp, and Leonardo and Steve: the young genius who
beat Apple to market by 800 Years, Ted Weinstein (2011), e-book. In these books he
analyzes the great influence the books written by Fibonacci (particularly Liber Ab-
baci) had on the development of knowledge and economy (mainly the trade) in that
period. The revolutionary idea of Fibonacci was the introduction of the Hindu-Arabic
decimal system of numeration, the rules for the arithmetic operations done using this
system, and practical applications to everyday life. The author arrives at the conclu-
sion that some shorter, practical versions (devoted to general public, written in local
dialects) of the book that circulated in that period and later, have all at their origin
a short version written by Fibonnaci himself.

In the present book the author tells the story of this quest - the people he met
and who helped him, descriptions of places he visited and some happy events that
made his plan realizable. The author mentions three major lucky events of this kind:

• the meeting in 2001 with the Italian historian of medieval mathematics at the
University of Siena - Rafaella Franci;

• the translation in English (the first and the only) of Liber Abbaci by Laurence
Sigler, completed after his death by his wife Judith Sigler, published with Springer in
2002;

• a paper, Fibonacci and the financial revolution (20 pp), published by William
Goetzmann in 2004 (discussed in Ch. 15, Leonardo and the modern finance).
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All these are described in the book, along with some information on some geo-
graphic and touristic aspects from Italy (with photographes) and details of the dis-
cussions and on the people he met. A chapter, (Ch. 14, This will change the world) is
dedicated to the parallelism between the revolution done by Fibonacci and that done
by Steve Jobs with the introduction of personal computers, in particular of Apple
Macintosh in 1984 - both were done by a single person and involved computation
with target to the marketplace. This is treated at large in the above mentioned book
on Leonardo and Steve.

Written in the alert and attractive style characteristic to all popular writings
of the author, with a lot of information of various various kind - personal, about
people and places, historical, mathematical - this book, based on a diary kept by the
author, will attract a large audience interested to know the story of this genius of the
Middle Ages whose books influenced so much de development of the modern Western
civilization up to our days, unfairly forgotten and neglected until the sixtieth of the
last century.

S. Cobzaş

Petro-Luciano Buono; Advanced Calculus. Differential Calculus and Stokes’ The-
orem, De Gruyter Textbook, De Gruyter, Berlin/Boston 2016, x+303 p., (ISBN
978-3-11-043821-5/pbk; 978-3-11-043822-2/ebook.

The book is based on the notes of a one-semester Calculus III course at the
University of Ontario Institute of Technology starting with 2012. Its aim is to give
a unified treatment of Green’s, Stokes and Gauss’ theorems (in R2 and R3), paving
the way to more advanced topics from differential geometry. The approach proposed
by the author has a geometric flavor, the tangent space being introduced early in the
study of differentiability of functions of one variable, differential forms and pullbacks.
The main advantage of this approach, based on tools from linear algebra, consists in
the possibility to define the differential of a function properly, as acting on tangent
vectors, and from there the study of differential forms and pullbacks in the context of
line integrals. As the author mentions in the Preface, one starts with the introduction
of terminology in the context of curves (one-dimensional geometric objects, easier to
understand) and then, after the introduction of the differentials of vector functions
of several variables and of the Jacobian, one extends the differential form concepts to
higher dimensions.

The one dimensional case is treated in Chapters 2, Calculus of vector functions,
3, Tangent spaces and 1-forms, and 4, Line integrals. The first chapter of the book
contains some preliminary results form set theory, linear algebra, curves and surfaces
(with illustrations in R2 and R3).

The general case of differential calculus for mappings from Rn to Rm is considered
in Chapters 5, Differential calculus of mappings, and 6, Applications of differential
calculus (including the study of extrema, parametrizations of curves and surfaces).
Chapter 7, Double and triple integrals, contains a presentation of Riemann integral
for domains in R2 and R3 and a proof of Green’s theorem in R2.
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General k-forms a treated in Chapter 8, Wedge products and exterior derivatives,
and their integration in Chapter 9, Integration of forms (pullbacks, change of variables,
orientation of surfaces). Stokes’ theorem (in R3) is proved in Chapter 10, Stokes’
theorem and applications (including a version for vector fields).

The characteristic features of the book are the abundance of worked examples,
illustrated by nicely drawn suggestive figures and the excellent layout (the author
promises to make available to the mathematical community the codes of the figures).
There are also exercises at the end of each section.

The book is clearly written, in a pleasant style, and can be recommended as a
textbook for advanced calculus courses.

Tiberiu Trif
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