![]()
AMBIENTUM BIOETHICA BIOLOGIA CHEMIA DIGITALIA DRAMATICA EDUCATIO ARTIS GYMNAST. ENGINEERING EPHEMERIDES EUROPAEA GEOGRAPHIA GEOLOGIA HISTORIA HISTORIA ARTIUM INFORMATICA IURISPRUDENTIA MATHEMATICA MUSICA NEGOTIA OECONOMICA PHILOLOGIA PHILOSOPHIA PHYSICA POLITICA PSYCHOLOGIA-PAEDAGOGIA SOCIOLOGIA THEOLOGIA CATHOLICA THEOLOGIA CATHOLICA LATIN THEOLOGIA GR.-CATH. VARAD THEOLOGIA ORTHODOXA THEOLOGIA REF. TRANSYLVAN
|
|||||||
The STUDIA UNIVERSITATIS BABEŞ-BOLYAI issue article summary The summary of the selected article appears at the bottom of the page. In order to get back to the contents of the issue this article belongs to you have to access the link from the title. In order to see all the articles of the archive which have as author/co-author one of the authors mentioned below, you have to access the link from the author's name. |
|||||||
STUDIA MATHEMATICA - Issue no. 3 / 2020 | |||||||
Article: |
ON A CERTAIN CLASS OF HARMONIC FUNCTIONS AND THE GENERALIZED BERNARDI-LIBERA-LIVINGSTON INTEGRAL OPERATOR. Authors: GRIGORE ȘTEFAN SĂLĂGEAN, ÁGNES ORSOLYA PÁLL-SZABÓ. |
||||||
Abstract: DOI: 10.24193/subbmath.2020.3.05 Published Online: 2020-09-15 Published Print: 2020-09-15 pp. 365-371 VIEW PDF: FULL PDF ABSTRACT: In this paper we examine the closure properties of the class $mathcal{V}_mathcal{H}(F;gamma)$ under the generalized Bernardi-Libera-Livingston integral operator $mathcal{L}_{c}(f),$ ($c>-1$) which is defined by $ mathcal{L}_{c}(f)=mathcal{L}_{c}(h)+overline{mathcal{L}_{c}(g)}$ where egin{equation*} mathcal{L}_{c}(h)(z)=frac{c+1}{z^{c}}intlimits_{0}^{z}(t^{c-1}h(t) dt ;;;% mathrm{and} ;;; mathcal{L}_{c}(g)(z)=frac{c+1}{z^{c}}intlimits_{0}^{z}(t^{c-1}g(t) dt. end{equation*} The obtained results are sharp and they improve known results. Key words: harmonic univalent functions; extreme points |
|||||||
![]() |
|||||||
![]() |